IGMASS Institutional Fundamentals: Progress and Prospects
The IGMASS Project is actively promoting throughout last two years at the international level on the auspicious of IAA Russian initiative to create special aerospace system for early warning of the international community about approaching natural and man-made disasters to the global scale, including threats of cosmic origin.
Conceptual Basis of the IGMAS Project

- Natural fires
- Earthquakes
- Volcanoes
- Landslides, mudflows, avalanches
- Floods
- Droughts
- Dangerous Meteo phenomena

Coordinates, area and dynamics for emergency area

- Quakes of crust
- Precipitations quantity
- Wind velocity, cloudiness
- Shift of earth surface
- Water level
- Disturbances of atmosphere

Optical and radar ERS satellites, Aviation data

- Radar interferometry, laser ranging
- Microwave scatter meters, radio altimeters
- Ionospheric tomography
- Seismic pick ups

Data base

Integration and analytical data processing

Support to decision making

Monitoring parameters

Monitoring means

Data acquisition and transmission

Command control point
Now, we know about dozens of asteroids and comets approaching our planet (for example, 99942 Apophis, 1997 VRZ, 1994 WK12), which in case of its fall down into the Earth, could trigger off global catastrophe.

Space debris have been recognized as a potential problem. Even though the current space debris population may not represent an immediate and excessive danger, the risk of collision with debris is continuously growing.
IGMASS' Creation Purposes

- Early warnings of natural and man-made disasters through its global and effective forecasting, involving integrated use of Earth-based, air and space systems all over the world.
- Social, economic, seismic, environmental and geophysical security, prevention of global space threats (asteroid, space junk etc.), as well as the unify and joint development of information, navigation and telecommunication resources for solving of general humanitarian issues (distant education, cultural heritage protection, medicine of catastrophes etc.)
- Gradual formation of a unified “Global Information Security Field”

Originality of data, to be recovered and transmitted by space systems: scalability, independence, validity, immediacy
Main Year 2010 Natural and Man-Made Disasters

Haiti Earthquake
Fatal casualties - hundreds thousands

Eyjafjallajökull volcano eruption
affected over 7 million air passengers

Ecological disaster in the Gulf of Mexico. Total damage and losses exceed 12 billion $US

Forest summer fires in Russia. Total economic losses reached 15 billion US$

...Natural and man-made disasters have caused world global economy losses in the year 2010 more than 222 billion US dollars.
(World's second-sized insurance company Swiss Re).
<table>
<thead>
<tr>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presenting on profile International scientific forums</td>
<td>Dnepropetrovsk, Ukraine (2007, 2009); Korolyov, Russia; Tunis; Shanghai, China (2008); Versailles, France (2009); Rome, Italy; Haifa, Israel; Paris, France; Moscow and Kazan, Russia; Donets, Ukraine; Beijing, China; Bonn, Germany; Washington, USA; Boyua, Cameroon (2010)</td>
</tr>
<tr>
<td>Project Manager Assignment and IGMAGSS’ working experts group creation (from IAA)</td>
<td>Paris, France (2009)</td>
</tr>
<tr>
<td>Project Researches and preparing of IGMAGSS’ working experts group conclusion</td>
<td>Yubileynyy, Russia (2009)</td>
</tr>
<tr>
<td>Submitting Project Researches and IGMAGSS’ working experts group conclusion to the IAA</td>
<td>Daejon, Republic of Korea (2009)</td>
</tr>
<tr>
<td>Project detailed discussion and forming of international body to manage the project</td>
<td>Limassol, Cyprus (2009); Riga, Latvia; Stockholm, Sweden (2010), Prague (Czech Republic)</td>
</tr>
<tr>
<td>Project submitting to the UN level (STS COPUOS)</td>
<td>Vienna, Austria (2010)</td>
</tr>
</tbody>
</table>
Cooperation in the frameworks of IGMMASS Project

- Space agencies and specialized government institutions
 - Argentina
 - Brazil
 - China
 - France
 - India
 - Italy
 - Japan
 - Spain
 - Ukraine

- International organizations and private companies
 - Argentina
 - Brazil
 - Canada
 - United States
 - Poland
 - Germany

- Space-rocket enterprises
 - Russia
 - Ukraine

- Research institutes, Institutions of higher education
 - Germany
 - Poland
 - Russia
 - Austria
 - Switzerland
 - China

- Academician institutions
 - Russia
 - China

- Non-governmental organizations
 - India
 - Brazil
 - Cameroon
 - China

Subcommittees
- Scientific-Technical
- Organizing
- Political/Juridical
- Humanitarian
- Financial/Economical

Managing Board

Executive Secretariat (Committee’s Working Body)
IAA Golden Jubilee Summit in Washington on November 17, 2010, which brought together leaders of 29 national space agencies and similar profile organizations representing Argentina, Austria, Belarus, Brazil, Britain, China, Germany, European Union, India, Israel, Italy, Kazakhstan, Canada, China, Mexico, Netherlands, Nigeria, Norway, Russia, Romania, Saudi Arabia, Thailand, Ukraine, Czech Republic, Chile, France, South Korea, Japan, as well as participating of the Chairman of the UN COPUOS, has once again demonstrated sincere and genuine interest to the Project.
IGMASS Structure

- GEOSS
- KOSPAS-SARSAT
- GMES
- Sentinel Asia
- DMC
- GCOS
- Disaster Charter
- IONOSAT

International, regional and national projects and programmes of monitoring of natural disasters and emergencies

International, regional and national space systems

Meteorological

Navigational

Observation and RSC

Communication

Own Developed IGMAS Orbital Segment:
small, micro monitoring satellites, equipped by variety of advanced instruments for detection early signs of disasters and catastrophes

IGMASS Ground Segment: Monitoring Data stations, International and Regional Crisis Management Centers; Launching and Flight Control facilities, Communication Infrastructure

Air-born segment
IGMASS GROUND INFRASTRUCTURE TO RECEIVE MONITORING INFORMATION

International system of receiving and integrated processing of satellite data

Additional advanced facilities to receive and process of monitoring information (uncovering symptoms of natural disasters)

Facilities to access telecommunication systems
Some precursors of Coming Earthquakes

Changes electrotelluric field during strong earthquakes in Kamchatka

Image from TERRA Satellite
Jan.11, 2010 2.55 p.m.

Cloud fields erosion stressed by red lines

Haiti Island

Results of satellite image with cloudy fields anomalies upper activated subduction zones, appeared more than day before the disaster

Done by researcher Dr.Lidya Morozova, Far East Branch, Russian Academy of Sciences
Specifically create and deploy orbital constellation of advanced small and micro satellites with special equipment for monitoring the geo-sphere and outer space, ballistic structure of which will be determined by the nomenclature and priority tasks of forecasting and warning.

Main satellite characteristics
- Mass (max): 120 - 400 kg;
- Mass of payload: 40\div120 \text{ kg.}
- Lifetime: up to 10 years

Payload
- Highly sensitive radiometric visible and IR range equipment, low (LF) and high frequency (HF) wave complexes, plasma complexes, complexes to monitor charged particles, magnetometers, mass-analyzers, spectrometers
Ionosphere Monitoring Project “GEOFISIKA”

“Zond” satellite for detailed observation

One small satellite (350 kg) on polar, high inclined elliptical orbit (H = 350-1200 km);
Equipment mass – 150 kg;
Content of the equipment:
- instrumental complex of ozone observations;
- multispectral complex UV visual and infrared radiation;
- sensor of the Sun activity;
- UV camera images of the Sun;
- Sensors corpuscular (solar and galactic) radiation;
- X-ray detectors;
- device for measuring the temperature of neutral atmospheric constituents;
- sensors of electric and magnetic fields

Ionosphere Constellation (“Terminator” and “Meridian” satellites)

4 small satellites;
Satellite mass – 200 kg;
Equipment mass – 80 kg;
Content of the equipment:
radiophysics complex (ionosonde) for external and transionospheric ionospheric sounding
GOAL of the EO microsatellite Soyuz-Sat-O: regular and on-line survey of the Earth surface in visible and near infrared bands of spectrum, storage and transmission images to the ground stations.

Tasks that can be solved with use of the microsatellite on the base of the Soyuz-Sat platform:
- monitoring of the natural hazards and emergency situations, and their consequences;
- ecological monitoring;
- monitoring and efficient assessment of the agricultural objects;
- monitoring of the sea coast and shore.

MAIN CHARACTERISTICS OF THE MICROSATELLITE WITH HIGH RESOLUTION OPTOELECTRONIC CAMERA

- Sun Synchronous Orbit: 575, km
- Inclination, degree: 97,7
- Number of observation channels: 15
- Panchromatic mode: 1
- Multispectral mode: 5
- Spatial resolution (Ground Sample Distance - GSD): m
- Panchromatic mode: 1,7
- Multispectral mode: 3,5 - 4,0
- Span, km: 40,0
- Swath, km: 700,0
- Rate of image transmission to the ground stations (X-band), Mb/sec: 160,0
- On-board memory volume, GB: 128,0
- Alignment accuracy, angular minute: 8
- Stabilization accuracy, degrees/second: 10-3
- Evaluation precision in orbit: ±15 m
- Velocity, m/sec: ±1
- Average daily power, W: 150,0
- Weight: 180,0 kg
- Lifetime, years: 5
- Putting in orbit: Piggy-back payload
- Time of manufacture, years: 2
- Average daily power, W: 80,0
- Weight, kg: 130,0
- Lifetime, years: 5
- Putting in orbit: Piggy-back payload
- Time of manufacture, years: 2

MAIN CHARACTERISTICS OF THE MICROSATELLITE WITH AVERAGE AND LOW RESOLUTION OPTOELECTRONIC CAMERA

- Sun Synchronous Orbit: 575, km
- Inclination, degree: 97,7
- Number of observation channels: 20
- Panchromatic mode: 1
- Multispectral mode: 5
- Spatial resolution (GSD), m: 8,0 - 10,0
- Panchromatic mode: 8,0 - 10,0
- Multispectral mode: 15,0 - 20,0
- Span, km: 80,0
- Swath, km: 700,0
- Rate of image transmission to the ground stations (X-band), Mb/sec: 160,0
- On-board memory volume, GB: 80,0
- Alignment accuracy, angular minute: 20
- Stabilization accuracy, degree/second: 10-3
- Evaluation precision in orbit: ±25 m
- Velocity, m/sec: ±10
- Average daily power, W: 80,0
- Weight, kg: 130,0
- Lifetime, years: 5
- Putting in orbit: Piggy-back payload
- Time of manufacture, years: 2

On-board equipment: Weight, kg
- Optoelectronic system: 35,0
- On-board system for image transmission with storage device: 7,8
- On-board system for image transmission: 21,5
- On-board control system: 25,5
- Power supply system: 10,0
- Navigation and stabilization system: 6,0
- Thermo supply system: 7,0
- Propulsion system: 67,0
- Frame: Total weight 180 kg
NATIONAL AND REGIONAL CENTRES CRISIS MANAGEMENT
NATIONAL AND REGIONAL EMERGENCY FORCES
REGIONAL CENTRES OF AIR-BORNE AND GROUND SENSORS MONITORING DATA COLLECTING AND PROCEEDING
INTERNATIONAL MONITORING DATA RECEIVING STATIONS (5 stations all over the world)

LOW LEVEL: receiving and proceeding of monitoring data
MEDIUM LEVEL: interpretation of monitoring data
UPPER LEVEL: utilization of monitoring information

INTERNATIONAL CRISIS MANAGEMENT CENTRES

NATIONAL AND REGIONAL MONITORING DATA RECEIVING STATIONS
International, regional and national ground facilities (contact and distant sensors)
INTERNATIONAL MONITORING DATA RECEIVING STATIONS (5 stations all over the world)

REGional CENTRES OF AIR-BORNE AND GROUND SENSORS MONITORING DATA COLLECTING AND PROCEEDING

NATIONAL AND REGIONAL CRISIS MANAGEMENT CENTRES

UN

Monitoring Information Management Hierarchy
Russian scientists studied advanced project to create a system of live asteroid and comet threat monitoring.

At a rough guess to effectively foresee the appearance of stellar bodies before at least 3-5 days it would possible to create special two echelons space system (also called “Space Sentinel”) from three big aircrafts with IR-telescopes in gravity neutral points.
Political Aspects of the IGMASS Project Implementation

Positive

<table>
<thead>
<tr>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in a wide-scale and long-term International project-level UN</td>
</tr>
<tr>
<td>Signing intergovernmental agreements on scientific-technical cooperation at regional and global levels</td>
</tr>
<tr>
<td>The growth of the International prestige of the state-Project participant</td>
</tr>
<tr>
<td>The possibility of solving socio-political and economical issues of the and region</td>
</tr>
<tr>
<td>Prospects of new political initiatives (for strengthening global and regional security)</td>
</tr>
</tbody>
</table>

Negative

<table>
<thead>
<tr>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of monitoring technology and information-telecommunication system resources in the military applied purposes</td>
</tr>
<tr>
<td>Political gambling on the Project objectives and its participation</td>
</tr>
<tr>
<td>Scientific and industrial espionage in the framework of the Project</td>
</tr>
</tbody>
</table>
Some Legal Aspects of the IGMASS Project Implementation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct documentation of International Statute of the Project and its management</td>
<td></td>
</tr>
<tr>
<td>Further development of national and international rule-making in the field of space-based monitoring</td>
<td>(data receiving and distributing, integration of informational and telecommunication resources of various countries and organizations)</td>
</tr>
<tr>
<td>International law issues of the IGMASS</td>
<td>creating and deploying in wide international cooperation (designing, engineering and using of its space segment, data dissemination, the status of terrestrial infrastructure, the procedure for notifying states about the threats, etc.)</td>
</tr>
<tr>
<td>The status of technical and intellectual property</td>
<td>created during the Project implementation</td>
</tr>
<tr>
<td>Terms of engaging national and international informational, navigational and telecommunication resources into the Project</td>
<td></td>
</tr>
<tr>
<td>Procedures of the Project funding (financing)</td>
<td></td>
</tr>
<tr>
<td>Responsibility for failure to provide warning data or its tendentious interpretation</td>
<td>(due to mistakes or other reasons)</td>
</tr>
</tbody>
</table>
Medical Offices: National centres of Catastrophes Medicine, its regional and territorial branches, clinical bases; telemedicine systems

A. Distance learning: training of space specialists and development of educational programs in unequipped areas

B. Telematics (transport corridors): vehicles location and statute control in remote territories

C. Cultural Heritage saving and protection in disaster dangerous areas

D. Catastrophe medicine: location and statute control, medical consulting the victims of emergencies

Casualties: participants of extreme expeditions; jammed up at the zones of emergencies; persons requested permanent medical control
On September 27, 2010 during the first working day of the 61st International Congress of Astronautics in Prague, the International Committee on the IGMASS Project Implementation (ICPI) held its first working session. The main topic of the ICPI Session was the adoption of draft of its Charter and Activities Plan for the coming year. During the ICPI Session was decided to hold on May 18-21, 2011 Third ICPI Session on the IGMASS agenda in Madrid, (Spain) by days of the “Russian Space Week “.
During January, 2011 the ICPI representatives hold several profile meetings in Beijing and Jakarta with participation of representatives of National space agencies of China and Indonesia (CNSA and LAPAN) for introduction the Project at both these countries. Chinese and Indonesian experts much interested in applied researches at the field of searching disasters pre-signs, complex proceeding and using monitoring information via ground infrastructure facilities of the countries. Exclusive attention was drawn into the questions of small and micro satellites as well as up-to date geophysical equipment, which has to design in the frame of the Project. As the meetings results some MOUs and protocols were signed and discussed, including preliminary agreements about regional South Asian cooperation (APSCO and ASEAN).
On the eve of 50th Anniversary of Yuri Gagarin Space Flight the IGMAS Project is an unique opportunity to unify world community efforts in the framework of new, joint strategy of peaceful space exploration, which is focusing into providing secure and social sustainable development of globe society in XXI century.
1. To discuss the issue about official recognition and support of the IGMASS Project by the UN institutions

2. To appeal all countries-participants join the IGMASS Project for its implementation in following areas:
 - researches and developments in the field of precursors of natural and man-made disasters identification;
 - creation of the IGMASS space segment, based on up-to-date small and microsatellites;
 - deployment of ground infrastructure for receiving and processing global aerospace monitoring data.

3. To include the question about the IGMASS Project implementation into STS final resolution and future agenda UN General Assembly and profile UN events
For obtaining additional information about the IGMASS Project, please, contact directly to the International Committee on the IGMASS Project Implementation (ICPI):

1. 27, Tikhonravov Str., Yubileinyy city, Moscow region, Russia, 141090
 Phone: +7 (495) 515-60-40 Fax: +7(495) 785-79-29 E-mail: IGMASS@mail.ru; info@igmass.com
 Prof. Valeriy A. Menshikov – Director General of the IGMASS Project

2. 6, rue Galilee, B.P. 1268-16, 75766 Paris Cedex 16, France.
 Phone: +33 607 022 790; Fax: +33 147 23 82 16; E-mail: sgeneral@iaaweb.org
 Dr. Jean Michel Contant – Secretary General, International Academy of Astronautics (IAA)

You may contact also to Federal Space Agency (ROSCOSMOS):
 Phone: +7 (495) 631-81-87 Fax: +7 (495) 688-90-63 E-mail: ums@roscosmos.ru