

Space Debris Reentry Hazards

William Ailor, Ph.D., The Aerospace Corporation
Chair, Space Hazards Technical Committee, International
Association for the Advancement of Space Safety
(IAASS)

Presented to Scientific & Technical Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space

February 2012

Space Debris

- Over 20000 tracked objects (objects larger than 10 cm diameter)
 - 1000 operating satellites
 - Over 13000 tracked objects in Low Earth Orbit (LEO)
- Reentry of larger, uncontrolled objects can be a hazard to people and property
- ~40 large debris objects (objects >800 kg) reenter randomly per year
 - Dead satellites (e.g., UARS, Phobos-Grunt)
 - Launch stages
- Reentry is recommended end-of-mission disposal option for LEO objects
 - Directed reentry to safe area for objects with casualty expectation exceeding defined limit (1x10⁻⁴ in the U.S.)
 - Random reentry acceptable for objects with lower risk
- Many large objects in LEO lack capability to control reentry location
 - Launched before requirement in place
 - Mission ended prematurely

Reentry Breakup Basics

- Space hardware reenters at very shallow angle (<1 degree)
- ~40 objects weighing more than 1 ton reenter randomly per year
- Major breakup at ~78 km
- 10 to 40% of dry mass on orbit survives and impacts the Earth's surface; poses hazard to people and property
- Debris spread over long, thin ground footprint

Subsequent breakup Solar panels fail Reentry Major breakup **♦** 18 km Ground footprint 2000 km Illustration, not to scale

Some Examples of Recovered **Debris**

Oklahoma, 1997

South Africa, 200

Mongolia, 2010

Estimating Risk

- Models predict number, size, mass of surviving debris
- Debris will fall in latitude band defined by orbit inclination
- Risk estimated for objects with enough kinetic energy to cause injury or death (> 15 Joules in U.S.)
 - Generally assumes standing human outdoors
 - Can include sheltering, rolling, other factors
- Risk estimated based on population within latitude band

Where will debris land?

Debris impact locations, 1997 Delta II Stage 2 reentry

- Precise location of reentry point (defined altitude prior to breakup) impossible to predict
 - Generally assume ±10-25% error in time of reentry due to atmospheric and drag uncertainties
 - Example:
 - Prediction made with tracking data 1 orbit revolution (90 minutes) from reentry has ±9 minute error
 - Object travelling at 7.5 km/sec x ±9 minutes
 → ±4050 km uncertainty in reentry location
- Impact point for surviving fragments also impossible to predict
 - Spread of fragments will depend on where fragments released, flight characteristics of each fragment
 - Fragments for Texas reentry impacted many kilometers from each other
 - Local wind can be significant factor

Typical Risks

	Daily Casualty Expectation
Natural Disasters	813 (Deaths, Worldwide, 2010) ¹
Natural Disasters	29 (Deaths, Worldwide, 2009) ¹
Work Accidents	12 (Deaths, U.S., 2009) ²
Motor Vehicle Accidents	99 (Deaths, U.S., 2009) ²
Unintentional Poisoning	84 (Deaths, U.S., 2009) ²
Assault (homicide)	45 (Deaths, U.S., 2009) ²
Falls	68 (Deaths, U.S., 2009) ²
Influenza	8 (Deaths, U.S., 2009) ²
Meteorite Falls	1.1x10 ⁻⁴ (Deaths or Injuries, Worldwide, 1800-
Reentry Events	2.7x10 ⁻⁵ (Deaths or Injuries, Worldwide) ⁴

¹ Julie Reed Bell, Seth Borenstein, "2010's World Gone Wild: Quakes, Floods, Blizzard," Associated Press, Dec. 19, 2010 (see http://www.msnbc.msn.com/id/40739667/ns/us_news-2010_year_in_review/t/s-world-gone-wild-quakes-floods-blizzards/).

² Kenneth D. Kochanek, et al, "Deaths, Preliminary Data for 2009, Vol. 59, No.4," National Vital Statistics Report, U.S. Department of Health and Human Services, March 16, 2011.

³ John S. Lewis, Table, pp176-182, "Property Damage, Injuries, and Deaths caused by Meteorite Falls," **Rain of Iron and Ice**, Perseus Publishing, 1996.

⁴ Assumes 100 reentries year, each with Expected Casualty of $1 \times 10^{-4} \rightarrow (100 \times 0.0001/365 = 2.7 \times 10^{-5})$

Reducing Hazards

Reentry Breakup Recorder assembly (recorder is inside heat shield)

Reentry Breakup Recorder during pre-flight testing

- New instruments recording what happens during breakup and providing precise information on debris impact locations
 - Reentry Breakup Recorder (REBR) collected data on reentry and breakup of Japan Aerospace Exploration Agency's (JAXA's) HTV-2 vehicle
 - Provided latitude and longitude of REBR impact location
- REBR data will help improve breakup and hazard prediction models
- Future systems may be designed to minimize hazards after reentry ("designed for demise")

Summary

- Over 40 large objects reenter randomly each year
- Variation in Earth's atmosphere due to solar effects and uncertainty in each object's aerodynamics and dynamics makes predictions of exact entry location impossible
- Reentry breakup process disperses components of each object along a long, thin debris footprint
 - After release, each object proceeds independently
 - Distance between objects can be many kilometers
- Risks to humans from each event is very low, but not zero
- New instruments increasing understanding of reentry breakup, may lead to designs of space hardware that minimize hazards for random reentry