ACTIVE DEBRIS REMOVAL:
CURRENT STATUS OF ACTIVITIES IN CNES

Christophe BONNAL
CNES – Paris - Launcher Directorate

christophe.bonnal@cnes.fr
Content

Introduction
1. High Level Requirements
2. System Architectures Options
3. ADR High Level Functions
4. Support studies
5. Conclusions
Kessler syndrome

- Identified theoretically by Don Kessler and Burt Cour-Palais in 1978.\(^1\)
- Four sources of space debris:
 - Mission Related Objects, Break-up, Aging, Collisions
 - When the “collision” source becomes larger than the “atmospheric cleaning”, natural increase of orbital population
 - Critical density varies strongly with the orbit altitudes:
 - Most critical zones in LEO, between 700 and 1100 km, highly inclined (including SSO)
- Potential need for Active Debris Removal (ADR)
- International problem
 - Sources of debris from every space-faring nations
 - No nation shall nor can solve the problem alone

Logic of the activities

- Consolidate the need, if any, to perform ADR in addition to the proper application of mitigation rules,

- Identify the corresponding system solutions,

- Identify the required technologies and clarify the corresponding development constraints,

- Identify some reference scenarios, with solutions precise enough to evaluate the programmatic consequences,

- Propose a scheme at international level to initiate such operations if, once again, they appear compulsory.
1. High Level Requirements

- Number of debris to remove
 - Studied at worldwide level since more than a decade
 - Reference studies from NASA Orbital Debris Office
 - Need to remove 5 large debris per year to stabilize the environment
 - Numerous robustness and sensitivity studies
 - Cross-check led by 6 other IADC delegations
 - Same hypotheses, model and mitigation
 - 100% explosion suppression
 - 90% success of end of life measures
 - Different tools
 - IADC Action Item 27.1
 - Coherent results, and confirmation of the need to remove 5 large objects, at least, per year
 ☞ “new mitigation measures, such as Active Debris Removal, should be considered”.

- Highest level priority for CNES:
 - Development by Toulouse Space Center of a predictive tool, with different modeling, enabling robustness studies
 ☞ Tool MEDEE is now available and will be presented in Darmstadt

1. High Level Requirements

- **Size of Debris**
 - Removing large debris enables a long term stabilization of orbital environment
 - Operators’ main concern is short term risk induced by small debris
 - Examples:
 - Risk on Spot 5 (CNES)¹
 - Mission loss 0.3% per year
 - Main influence of < 5 cm
 - Risk on Sentinel 1 (TAS-I draft)²
 - Mission loss 3.2% over lifetime
 - Large integer objects may not be the only ones to remove:
 - Different concerns
 - Very different solutions

¹ P. Brudieu, B. Lazare, French Policy for Space Sustainability and Perspectives, 16th ISU Symposium, Feb. 21st, 2012
1. High Level Requirements

- **Stabilization of environment**
 - Current recommendations aim at stabilizing the orbital environment
 - But do we really want a stabilization?
 - Is the current risk considered acceptable by operators?
 - Could it be increased? To which level?
 - Should it be decreased?
 - When should we act? Now? In 20 years time?

- **Acceptability of random reentry**
 - Can ADR operations lead to random reentry of large dangerous objects?
 - Casualty threshold = 10^{-4} per operation
 - By definition, ADR shall be done on large objects \equiv Dangerous
 - Random reentry would be illegal according to French Law on Space Operations
 - However, it improves both debris situation and casualty risk
 - Action on-going at CNES Inspector General level
 - Action to be led within IADC WG4
2. System architecture options

Debris playground

- Definition of an “interesting target”:
 - Function of size – mass – orbit density
 - Function of the debris population in one given zone in case of multiple debris chasing
 - Minimization of the mission ΔV
 - Minimization of global mission duration
 - Could be function of criticality of random reentry:
 - Random reentry not acceptable if casualty > 10⁻⁴
 - To be confirmed at national level, then at IADC level
 - Typical threshold in size: 500 to 1000 kg
 - Could be antagonist with finality of ADR
 - Only solution with Direct Controlled Reentry are studied today
 - Could be function of nature of debris
 - Launcher stages pose potentially less problems than Satellites (definition of a debris, confidentiality, mechanical robustness…)
 - Not function of country
 - Deliberate choice to consider for the operational phase all debris
 - International problem, tackled at international level

- Identification of the most interesting zones:
 - Initial sorting identified 10 critical zones
 - Refined subdivision into coherent sub-regions ²

1. JC. Liou, *The top 10 Questions for Active Debris Removal*, #S1.3, 1st European Workshop on ADR, Paris, June 2010
2. System architecture options

- **Strategy for successive debris removal**
 - Numerous possible schemes:
 - Single shot: one chaser, one debris
 - Multiple debris: one chaser, several debris
 - Multiple debris: one carrier + multiple deorbiting kits, one debris per kit
 - Multiple debris: multiple chasers in one launch, several debris each
 - No obvious solution:
 - Cost of the launch → Dedicated or Piggy-back
 - Size of the launcher
 - Cost of the chaser “functions” → Effect of mission rate
 - Sizing of the multiple debris chasers → Global mission ΔV
 - Analyses performed by Astrium, TAS-F and Bertin under CNES contract
 - Results are still differing!
2. System architecture options

Among the most promising solutions:

- Considered for the Operational phase
 - First Generation may show different optimum
- Large launcher with multiple chasers, each delivering multiple kits

- Big launcher (e.g. Ariane 5) launching N different multi-debris OTV’s
 - Group is divided into N RAAN regions
 - Each OTV targets a certain part of the group
 - Lower launch staging orbit generates a shorter wait

1 P. Couzin, X. Rozer, L. Stripolli, Comparison of Active Debris Removal Mission Architecture, IAC-12-A6.5.5, Naples 2012
2. System architecture options

- From CNES Internal Study OTV
 - Removal of 5 Ariane upper stages
 - Autonomous kit achieves capture
 - Similar targets
 - +/-200 km $\Delta a \rightarrow +/-36^\circ$/yr drift capacity
 - Targets visited in increasing order of inclination \rightarrow cumulated $0.6^\circ \Delta i$

\Rightarrow Mission duration depends on launch date

\Rightarrow Adjust drift allotted ΔV to target distance

1 E. Pérot, Active Debris Removal Mission Design for LEO, #479, 4th EUCASS, St Petersburg July 2011

IAF Workshop on Space Debris Removal – UN, Vienna – February 11th, 2013
3. ADR High Level Functions

- **Active De-orbiting of a debris requires 5 functions:**
 - F1: Far Range rendezvous between Chaser and Debris:
 - Up to 10 to 1 km from target
 - Can be done through absolute navigation
 - Already demonstrated and space qualified
 - F2: Short Range rendezvous, up to contact
 - Never demonstrated (published) yet for objects which are:
 - Non cooperative
 - Non prepared
 - Potentially tumbling
 - Potentially physically and optically different from expected
 - F3: Mechanical Interfacing between Chaser and Debris
 - Never demonstrated (published) yet for a non prepared object
 - F4: Control, De-tumbling and Orientation of the debris
 - Partially demonstrated in orbit, but Human operations
 - F5: De-orbitation
3. ADR High Level Functions

General approach and trade-off (example from TAS-F):

- 1 OTV/duress
- 1 multi debris OTV
- 1 suppliant multi debris OTV
- 1 multi launch
- 120 de-sorbtion modules carrier
- 130 de-orbit OTV
- 111 multiple launch
- 100 mini/ micro launchers

- 1 mission concept
- 2 orbital manoeuvres
- 3 rendez vous
- 4 rotation bracking
- 5 capture
- 6 de-orbitation

- 20 High thrust propulsion (chemical)
- 21 Low thrust propulsion (electrical)
- 22 particles throw using ionic propulsion
- 23 orbital plan drift + inclination correction
- 30 Sensors
- 40 brush contactor
- 41 laser ablation
- 50 berthing
- 60 no contact

- 51 docking
- 52 flexible capture
- 53 robotic arm
- 54 nozzle level capture
- 55 capture with claws
- 56 magnetic capture

- 57 net based
- 58 grappin
- 59 harpoon

- 60 laser ablation
- 61 laser radiation pressure
- 62 particles throw using ionic propulsion
- 63 electron gun (negative charge)
- 64 water projection in eclipse

- 65 from composite
- 66 with transferred module

- 67 high thrust module (solid propellant engine)
- 68 electrodynamic tether module
- 69 drag enhancement
- 70 inflatable structure (balloon)
- 71 deployable sail

1 TAS-F – MDA – GMV, CNES OTV-1 Study

IAF Workshop on Debris Removal – UN, Vienna – February 11th, 2013
3. ADR High Level Functions

- **F2: Short Range rendezvous, up to contact**
 - Numerous sensors can be considered
 - Optical, Mono or Binocular, Lidar / Radar…
 - Example from MDA-TASF
 - No single technology can cover the complete function

<table>
<thead>
<tr>
<th>Technology</th>
<th>Operation Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Debris Detection</td>
</tr>
<tr>
<td></td>
<td>-8.5km</td>
</tr>
<tr>
<td>Passive Camera (monocular)</td>
<td>Bearing</td>
</tr>
<tr>
<td></td>
<td>Feature Inspection/Imaging</td>
</tr>
<tr>
<td>Stereo Camera</td>
<td>Bearing & Range</td>
</tr>
<tr>
<td></td>
<td>Satellite Pose & Pose Rate</td>
</tr>
<tr>
<td></td>
<td>Mounting Ring Pose & Pose Rate</td>
</tr>
<tr>
<td></td>
<td>Feature Inspection/Imaging</td>
</tr>
<tr>
<td>Laser Range Finder</td>
<td>Ranging</td>
</tr>
<tr>
<td>Scanning LIDAR</td>
<td>Bearing & Ranging</td>
</tr>
<tr>
<td></td>
<td>Feature Inspection/Imaging</td>
</tr>
<tr>
<td></td>
<td>Pose & Pose Rate</td>
</tr>
<tr>
<td>Flash LIDAR</td>
<td>Bearing & Ranging</td>
</tr>
<tr>
<td></td>
<td>Feature Inspection/Imaging</td>
</tr>
<tr>
<td></td>
<td>Pose & Pose Rate</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
</tr>
</tbody>
</table>

1 TAS-F – MDA – GMV, CNES OTV-1 Study

IAF Workshop on Space Debris Removal – UN, Vienna – February 11th, 2013
3. ADR High Level Functions

- **F3: Mechanical interfacing, some examples:**
 - **OSS:** clamp inside the target nozzle
 - **DLR:** robotic arm DEOS
 - **Uni. Roma:** foam gluing
 - **ESA-Astrium:** hook ROGER
 - **CNES:** deorbiting kit with robotic operations
 - **Astrium UK:** harpoon
 - **Astrium:** net capture
 - **EPFL:** claw

IAF Workshop on Space Debris Removal – UN, Vienna – February 11th, 2013
3. ADR High Level Functions

■ F3: Capture – Mechanical Interfacing
 ♦ No reference solution yet
 ♦ Solutions without mechanical interface are discarded here:
 • Electrical engine beam pressure
 • Electrostatic tractor
  Lead to uncontrolled reentry
 ♦ Solutions may impose different modes of deorbiting
 • Net, hook… will impose “pulling” the debris
 • Some allow the control of the debris, other don’t
 ♦ Among the preferred:
 • Net capture
 • Harpoon or hook
 • Robotic arms
  Trade-off ongoing during the OTV-2 study (AST and TAS)
3. ADR High Level Functions

- **F4: Control-Detumbling of the debris:**
 - Example from MDA ¹
 - Rendezvous analyses demonstrate:
 - A dramatic dependency of the rendezvous sizing to the tumbling rate
 - The importance of the rendezvous axis
 - Results suggest to assess different rendezvous scenarios, associated to different robotic solutions:
 - A – RDV along the debris tumbling axis
 - B – RDV along the robotic capture axis
 - C – Approach perpendicular to the tumbling axis

¹ TAS-F – MDA – GMV, CNES OTV-1 Study
3. ADR High Level Functions

- **F5: Deorbitation:**
 - High thrust deorbitation, Controlled reentry
 - Rendezvous analyses demonstrate:
 - Conventional chemical propulsion
 - Solid, Hybrid, Monopropellant, Bi propellant
 - Each have drawbacks and advantages
 - Potentially most promising: Hybrid propulsion

DeLuca et al. IAC-12-A6.5.8
4. Support studies

Envisat:

- One of the highest priorities debris
- Proposal to reorbit above 2000 km:
 - First generation
 - Would allow a full scale demonstration of most of the functions
 - Need to find the cheapest solution possible
 - Electrical propulsion
 - Derived from Smart 1 (x 4)
 - Compatible with a Vega launch
 - Long tether (500 to 1000 m)
 - Mechanical interfacing with hook on one of the “zenit” instruments
 - Global mass budget ≅ 820 kg
- Presented in Ref ¹

¹ C. Bonnal, C. Koppel, 2nd European workshop on ADR, Paris, June 2012
4. Support studies

- Stability of the Chaser-Tether-Debris assembly:
 - Towing = Preferred solution today, but very low TRL
 - Control laws of the chaser during de-orbiting boost:
 - Parameters of tether: length, elasticity, damping
 - Initial conditions of Debris: 6 DOF = orientation = angular motion
 - Parameters of Chaser: MOI, thrust and variation, initial orientation
 - Parameters of tether-debris interface: unbalance
 - Acceptance criteria: ΔV amplitude, orientation, dispersions
 - Control laws

- Three teams working on the topic in France
 - Mines Paris-Tech
 - Supelec
 - Thales Alenia Space

- Numerous other teams worldwide (ESA, Russia, USA…)
- Results not yet available
 - Dedicated session during upcoming EUCASS in July 2013

IAF Workshop on Space Debris Removal – UN, Vienna – February 11th, 2013
5. Conclusions

- **First priority is to consolidate high level requirements:**
 - Question today is not yet How, but What and When
 - Study of technical solutions:
 - Necessary for programmatic evaluations
 - Necessary for R&T programs for TRL increase
 - Numerous questions have very high priority:
 - Legal and insurance framework, ownership, launching state
 - Political hurdles: Parallel with military activities
 - Financing schemes
 - International cooperation framework

- **Recommendation to work on a reference test case**
 - Cosmos 3M upper stage could be a good example
 - Benchmarking of solutions over same hypotheses
 - Initial steps of international cooperation