Status of Active Debris Removal (ADR) developments at the Swiss Space Center

Muriel Richard, Benoit Chamot, Volker Gass, Claude Nicollier
muriel.richard@epfl.ch

IAF SYMPOSIUM 2013

11 February 2013
Vienna International Centre, Austria
ADR mission architecture studies

• Questions:
 - What is the best architecture (= cheapest?) to remove 5-10 large debris per year?
 - What is the best way to get organised internationally? (not yet answered)

• Considering population of “500 most wanted debris” [R1]:
 - Mostly large rocket bodies
 - 1000 – 8000 kg
 - Mostly 71°, 81°, 83° and SSO inclinations

In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
- Considers various mission architectures
In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
- Considers various mission architectures
- Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
ADR mission architecture studies

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
ADR mission architecture studies

• In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
 - Provides a parametric design the “remover satellite or kit”, compares various technologies

Mass Power Cost

Spread in RAAN at launch minimized
ADR mission architecture studies

In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:

- Considers various mission architectures
- Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
- Finds the launch date that maximises number of debris removed per launch
- Provides a parametric design the “remover satellite or kit”, compares various technologies
- Provides a parametric mission and debris removal campaign cost

First results to be published during 6th European Conference on Space Debris, 22-25 April 2013, Darmstadt, Germany
ADR demonstration opportunity

- Participated in EC FP7 Call SPA.2013.2.3-02: “Security of space assets from in-orbit collisions”

- This call asks for a demonstration mission, which purpose is to perform an in-orbit removal of debris in a low-cost manner

- **Consortium coordinator: GMV (Spain)**
 - Partners: Univ. Bologna, ALMASpace, Thales Alenia Space, EPFL, TSD, Univ. Roma La Sapienza, Poli Milano, ONERA, D-Orbit, DTM

- **Will test and validate:**
 - Guidance, Navigation & Control, before and after capture
 - Vision based approach system
 - Multi-capture demos, inc. Robotic and/or Net capture
 - Mission operations concept, autonomy level
Optical detection of debris

- In collaboration with Uni-Bern Astronomical Institute (Prof. T. Schildkecht), preparing an optical characterisation of SwissCube CubeSat

- AIUB has a long experience in the field of debris observation (mainly in high-altitude orbits, GEO/GTO/MEO)
 - Based on optical observations with the telescopes at the Zimmerwald observatory and in Teneriffe, AIUB developed high precision propagators to predict the position of debris objects, including high area-to-mass ratio objects
 - Has a permanently updated debris catalogue and algorithms to identify and extract debris objects from telescope images
 - AIUB is also trying to identify shape, size and rotation states using light curve analysis.
Optical detection of debris

- In collaboration with Uni-Bern Astronomical Institute (Prof. T. Schildkecht), preparing an optical characterisation of SwissCube CubeSat

- Future developments:
 - More advanced propagators, identification of debris shapes, rotation rates and spin axis orientation using light curve analysis and direct imaging
 - Improved and automated observation technologies
 - Debris detection and tracking using the Zimmerwald Satellite Laser Ranging (SLR) station

- Interests of AIUB:
 - Verify AIUB’s orbital determination/observations with on board-measurements
 - Verify light curve spectra
 - Verify on-board observation/tracking techniques (algorithms)
 - Have onboard telescope images on ground for comparison.
CleanSpace One Project

• After the launch of SwissCube CubeSat (Sept. 2009), started ADR technology program called “Clean-mE”

• Research and development most efficient when targeted to a concrete application
 => Start of CleanSpace One project

• The objectives of the CleanSpace One project are to:
 - Increase awareness, responsibility in regard to orbital debris and educate aerospace students
 - Demonstrate technologies related to Orbital Debris Removal
 - De-orbit SwissCube.
CleanSpace One NanoSat

- **CleanSpace One nanosat:**
 - Based on a CubeSat platform as preliminary assumption
 - Preliminary (Phase 0) design done using CDF
 - Launch ~ 2017

- Critical technologies provided by partner institutions (open to international cooperation). Satellite platform designed by students.

- Operations performed by students in partnership with professional institutions

CleanSpace One conceptual design
Vision based systems – current work

• With EPFL Prof. J-P. Thiran’s laboratory, research developments for one 2-D camera and optical flow
 - Motion reconstruction algorithms
 - Algorithms developed, first iteration
 - Current process: creation of representative images, characterisation of algorithm performances

• Hardware implementation
 - Cameras: have discussions with Space-X and with PhotonFocus
 - Evaluation of various CubeSat based computers
Capture mechanisms – current work

• Three designs in parallel:

1. Underactuated mechanisms
 - Work under/in cooperation with Prof. Lauria, HES-Geneva

2. Dielectric polymer actuators
 - Work under/in cooperation with Prof. H. Shea

3. Compliant mechanisms
 - Work in cooperation with F. Campanile, EMPA
Conclusions

• The Swiss Space Center is pursuing mission architecture studies and development of technologies needed for Orbital Debris Removal

• Participation in mission oriented proposals
 - CleanSpace One project in fund raising phase, student team started in September 2012
 - EC FP7 ADR
 - Nanosat demonstrators have three major advantages:
 ▪ Tests and demonstrates key elements for orbital debris removal, focuses the development on something real
 ▪ Relatively cheap demonstration mission, proposes low-cost mission options
 ▪ Continues education in a very motivating field

• Our goal is to help community, fill in technology gaps, and propose low-cost solutions that integrates within international developments