Results of GEO and HEO monitoring by ISON network in 2012

50th session of STSC COPUOS
Vienna
11-22 Feb 2013
ISON –
International Scientific Optical Network

As of Dec 2012 ISON joins:

• Observation scheduling, coordination and data processing center (KIAM RAS)
• 32 facilities (including 28 ones for space debris observations) in 13 countries with nearly 50 telescopes of different class (aperture from 19 cm to 2.6 m)
• Company for the network maintenance and instruments development (ASC Project-Technics)
ISON observatories

- Telescopes with average and large apertures (400mm and above)
- Wide-field average-aperture telescopes (400-700mm)
- Wide-field survey telescopes (220-250mm)
- Small telescopes for follow-up observations (220-300mm)
- Telescopes for minor bodies observations
- Telescopes in production
ISON Research Goals in Space Debris Area

- Estimation of real population of space debris at higher geocentric orbits
- Determination of physical properties of discovered space debris objects
- Determination of probable sources of newly discovering space debris fragments
- Verification of existing models of space debris distribution and evolution at higher orbits
- Higher orbit space debris risk assessment
- Improvement of technologies of studying of space debris population using optical instruments
- Improvement of motion models for space debris objects with complex physical properties
ISON Milestones in 2012

The UN BSSI and ISON cooperation is established. UNBSSI-ISON Outreach Seminar as a side event of the 55th Session of the UN COPUOS

New partners joined ISON:
 • The Autonomous University of Sinaloa (Universidad Autónoma de Sinaloa, UAS), Mexico
 • The Research Centre of Astronomy and Geophysics of the Mongolian Academy of Sciences

3 facilities put into operation:
 • Cosalá, Sinaloa, Mexico
 • Khureltoogoot, Mongolia
 • Kislovodsk, Russia

Regular Molniya-type HEO surveys started.

270 new high orbit (GEO and HEO) debris are discovered
UN Basic Space Science Initiative (BSSI) - ISON Outreach Seminar took place as a side event of 55th Session of the UN COPUOS on June 11th, 2012.

The established cooperation is a step towards broader involvement of all nations into fundamental and applied research of space debris problem, further development of international practice of information exchange and analysis in this area.
First ISON observation facility in Mexico – joint project with Universidad Autónoma de Sinaloa

left: shelter with 25-cm telescope in Cosalá, Sinaloa (Mexico);
center: the commemorative plaque
right: outreach and educational seminar at the facility;
bottom: numerous visitors around the telescope at the opening ceremony
Kislovodsk observatory (25-cm, 2x20 cm and 40-cm telescopes)
Khureltogoot observatory in Mongolia started to work with ISON
Growing amount of measurements collected by ISON, 2003 – 2012
Start of HEO surveys, extended GEO surveys

- 19.2 cm VT-78e and 18 cm VT-52c telescopes with 7x7 degree FOV are installed in Sanglok, Nauchnyi-1 and Khuraltogoot, twin 19.2 cm VT-78e telescope (FOV 7x5 deg for each channel) is installed in Kislovodsk
- **Kislovodsk, Sanglok and Khureltogoot** are carrying out extended GEO surveys (limited magnitude of detecting GEO objects – 14.5ᵐ)
- **Nauchniy-1** carries out targeted surveys of apogee area of Molniya-type HEO objects that already resulted in discovery of many previously unknown debris
Extended GEO surveys (examples)

Sanglok VT-78e first extended GEO surveys, Jan 2012

<table>
<thead>
<tr>
<th>Date</th>
<th>Duration, hh:mm</th>
<th>Tracks</th>
<th>Measurements</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.01.2012</td>
<td>11:47</td>
<td>2297</td>
<td>16006</td>
<td>577</td>
</tr>
<tr>
<td>18.01.2012</td>
<td>12:33</td>
<td>2413</td>
<td>16910</td>
<td>609</td>
</tr>
<tr>
<td>19.01.2012</td>
<td>11:08</td>
<td>2265</td>
<td>16063</td>
<td>597</td>
</tr>
<tr>
<td>20.01.2012</td>
<td>12:28</td>
<td>2428</td>
<td>17030</td>
<td>637</td>
</tr>
<tr>
<td>28.01.2012</td>
<td>12:14</td>
<td>2383</td>
<td>16822</td>
<td>606</td>
</tr>
<tr>
<td>31.01.2012</td>
<td>11:44</td>
<td>2184</td>
<td>15553</td>
<td>580</td>
</tr>
</tbody>
</table>

Khureltogoot VT-78e selected extended GEO surveys, Dec 2012 – Jan 2013

<table>
<thead>
<tr>
<th>Date</th>
<th>Duration, hh:mm</th>
<th>Tracks</th>
<th>Measurements</th>
<th>Objects</th>
<th>Average arc length per GEO object, min</th>
<th>Max arc length per GEO object, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.12.2012</td>
<td>12:20</td>
<td>1513</td>
<td>10550</td>
<td>363</td>
<td>171.5</td>
<td>514.6</td>
</tr>
<tr>
<td>07.12.2012</td>
<td>10:46</td>
<td>1495</td>
<td>10424</td>
<td>299</td>
<td>271.6</td>
<td>529.8</td>
</tr>
<tr>
<td>09.12.2012</td>
<td>12:18</td>
<td>1044</td>
<td>7098</td>
<td>331</td>
<td>165.4</td>
<td>536.9</td>
</tr>
<tr>
<td>12.12.2012</td>
<td>12:15</td>
<td>1171</td>
<td>8150</td>
<td>342</td>
<td>163.0</td>
<td>559.5</td>
</tr>
<tr>
<td>05.01.2013</td>
<td>13:04</td>
<td>1403</td>
<td>9444</td>
<td>366</td>
<td>286.5</td>
<td>591.6</td>
</tr>
<tr>
<td>18.01.2013</td>
<td>12:48</td>
<td>1570</td>
<td>10441</td>
<td>421</td>
<td>311.1</td>
<td>595.0</td>
</tr>
</tbody>
</table>

Increased measurement arc length is very important from the point of view of obtaining more precise orbits from just one night observations.
ISON Database
of HEO, MEO and GEO objects

As of Feb 1, 2013 the ISON database contains information for more than 3200 HEO, MEO and GEO objects with orbits updating using ISON optical measurements.

897 of these objects are newly discovered during 10 years of ISON work.

270 HEO and GEO space debris objects are discovered in 2012 (compare to 168 ones discovered in 2011 and 61 – in 2010).
HEO, MEO and GEO Objects in ISON Database

- Objects associated with GTO launches
- Objects associated with Molniya-type orbit launches
- Objects originated in GEO

Objects discovered by ISON • All other objects
Identification of GEO debris sources

New work on identification of ISON discovered GEO debris is started.

In 2012 we identified

- 4 GEO debris objects as associated with launches of FengYun-2 spacecraft in 1997, 2004, 2008 and 2012,
- 3 GEO debris objects as associated with launches of Meteosat first and second generation spacecraft in 1993, 1997 and 2012,
- 4 GEO debris objects as associated with launches of DSP spacecraft series in 1991, 1994, 1997 and 2007,
- 1 debris object as an AKM used to deliver GMS-2 spacecraft to GEO in 1981
ISON observatories involved into asteroids research
ISON comet (C/2012 S1)

Discovered on Sep 21, 2012 in ISON Kislovodsk observatory (Russia) and confirmed in Maydanak observatory (Uzbekistan), partner of ISON

Third comet discovered within the ISON project framework

A potentially Great Comet of the century – if it survives the Sun encounter (is due to fly 1.9 million km of the center of the Sun on Nov 28, 2013) then it is predicted to become brighter than the full moon and to be visible in the daytime sky
Conclusions

- Partnership is established between UN BSSI and ISON
- ISON network collects on a routine basis astrometric and brightness measurements for more than 1800 objects in GEO region and more than 1400 objects at HEO orbits
- Obtained measurement data are processing to improve orbits and to find various events (appearance of a new object due to launches, fragments separation etc., possible close encounter, manoeuvres of different purpose)
- Accumulated information is using to support spaceflight safety tasks, including those ones solving within the framework of ASPOS OKP system by Roscosmos jointly with RAS
- ISON continues to develop an asteroid research program
- Development of ISON – the first international network for monitoring near-Earth space – continues and all nations are welcome to join us
Thank you for your attention!