

# Генеральная Ассамблея

Distr. LIMITED

A/AC.105/673 7 May 1997

RUSSIAN ORIGINAL: ENGLISH

### КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ КОСМИЧЕСКОГО ПРОСТРАНСТВА В МИРНЫХ ЦЕЛЯХ Сороковая сессия Вена, 2-13 июня 1997 года

# ВЫСТУПЛЕНИЯ ПО НАУЧНО-ТЕХНИЧЕСКИМ ВОПРОСАМ НА ТРИДЦАТЬ ЧЕТВЕРТОЙ СЕССИИ НАУЧНО-ТЕХНИЧЕСКОГО ПОДКОМИТЕТА

# Доклад Секретариата

1. В ходе тридцать четвертой сессии Научно-технического подкомитета Комитет по исследованию космического пространства (КОСПАР) Международного совета научных союзов (МСНС) и Международная астронавтическая федерация (МАФ) во взаимодействии с государствами-членами организовали симпозиум по теме "Космические системы прямого вещания и глобальные информационные системы для исследования космического пространства" в дополнение к обсуждению этой темы в рамках Подкомитета. Симпозиум был организован в соответствии с рекомендацией Подкомитета, принятой на его тридцать третьей сессии (А/АС.105/637, пункт 192), которая была впоследствии одобрена Комитетом по использованию космического пространства в мирных целях на его тридцать девятой сессии<sup>1</sup> и Генеральной Ассамблеей в ее резолюции 51/123 от 13 декабря 1996 года.

2. Этот симпозиум стал тринадцатым из серии подобных мероприятий, организуемых КОСПАР и МАФ в ходе ежегодных совещаний Научно-технического подкомитета по теме, подбираемой на каждый год Подкомитетом на своей предыдущей сессии. Симпозиум проводился 17 и 18 февраля 1997 года после окончания вечерних заседаний Подкомитета.

3. Помимо специальных выступлений, организованных КОСПАР и МАФ по просьбе Подкомитета, делегации государств-членов подготовили ряд выступлений специалистов в области космонавтики и ее применения с научно-техническими докладами по различным пунктам повестки дня Подкомитета. Несколько национальных и международных организаций также представили специальные доклады об их научно-технической деятельности.

4. В целях широкого распространения информации о последних достижениях в области космонавтики и ее применения, представленной в ходе этого симпозиума и сессии Подкомитета, Секретариат подготовил приводимое ниже резюме этой информации.

5. В приложении содержится более подробная информация о научно-технических докладах, представленных на тридцать четвертой сессии Научно-технического подкомитета. Приложение

публикуется только на английском языке. Перечень докладов и ораторов содержится в добавлении к приложению.

# I. СИМПОЗИУМ ПО КОСМИЧЕСКИМ СИСТЕМАМ ПРЯМОГО ВЕЩАНИЯ И ГЛОБАЛЬНЫМ ИНФОРМАЦИОННЫМ СИСТЕМАМ ДЛЯ ИССЛЕДОВАНИЯ КОСМИЧЕСКОГО ПРОСТРАНСТВА

6. Главные функции любого средства вещания заключаются в том, чтобы транслировать материалы информационного, развлекательного и учебного характера. Долгое время до появления телевидения основным средством передачи новостей было радио. Но даже и в настоящее время некоторые пользователи больше полагаются на радиопрограммы новостей, чем на какие-либо другие средства массовой информации. Радио выполняет очень важную социальную функцию передачи учебных программ, особенно для детей школьного возраста. Оно также предоставляет, иногда даже в интерактивном режиме, такие специальные услуги как консультирование земледельцев, промышленных рабочих, женщин, подростков и детей.

7. В мире насчитываются миллиарды радиоприемников. Однако, как и в случае телефона и телевидения, количество радиоприемников на тысячу человек в разных странах весьма различно и зависит от экономического положения государств (от 1050 в развитых странах до примерно 180 в развивающихся странах). Есть страны, где на 30 процентах их территории вообще отсутствует какоелибо вещание национальных радиостанций. Современные радиостанции в своей основе аналогичны и представляют собой наземные системы. Спутниковые системы используются главным образом для более широкой передачи программ на основе ретрансляции или для обслуживания кабельных конечных пользователей. Потребуется определенное время, прежде чем получат распространение цифровые системы, поскольку необходимо полностью возместить издержки на создание существующей инфраструктуры и стоимость цифровых приемных устройств на начальном этапе будет высока.

8. В Индии в последние несколько лет проводятся исследования по применению спутникового цифрового радиовещания. Со времени создания в 1983 году Индийской национальной спутниковой системы телевидения и телесвязи (ИНСАТ) главным средством передачи радиопрограмм была спутниковая система радиосети (РС). Совокупное время ежемесячного использования спутникового ретранслятора для 28 каналов РС превышает 13 000 часов. Несмотря на наличие разветвленной национальной радиосети Индия в силу многообразия своего населения и его языков изыскивает пути создания достаточного количества аудиоканалов в стране.

9. Спутник GSAT-1, первый экспериментальный запуск которого намечено осуществить с помощью индийской ракеты-носителя для вывода спутников на геостационарную орбиту, оснащен двумя коротковолновыми ретрансляторами высокой мощности, которые позволят обеспечить вещание по 96 аудиоканалам. Как ожидается, наличие столь большого числа каналов революционизирует систему радиовещания в Индии. Помимо каналов общего назначения можно будет также предусмотреть специальные каналы, посвященные новостям, спорту, различным видам музыки, деловой информации, средствам коммуникации в целях развития и другим областям, представляющим интерес. Цифровой характер системы позволит обеспечить предоставление самых разнообразных услуг в области передачи информации, например, распространение записей лекций для студентов открытых университетов, распространение электронных газет, информации служб коммунального хозяйства или получение больших объемов данных из сети Интернет.

10. Беспрецедентный экспоненциальный рост сети Интернет, при котором ее объем увеличивается каждый год в два раза, привел к столь же быстрому росту спроса на средства комплексного представления информации (мультимедиа) и трансляционные службы. В силу того, что интегрированные видео, аудио и компьютерные системы требуют более широкого диапазона частот, в существенном совершенствовании нуждается наземная инфраструктура - волоконно-оптические сети, цифровая сеть комплексного обслуживания, современные методы модулирования, системы сжатия данных и другие. Все это также важно для обеспечения оптимальной комбинации с формирующимися спутниковыми системами, которые дополняют наземные системы и необходимы для быстрого

глобального расширения обслуживания. По контракту с Европейским космическим агентством (ЕКА) Исследовательским центром Джоаннеум и Зальцбругским университетом (Австрия) в настоящее время разрабатывается экспериментальная спутниковая система для установления связи между локальными сетями. Она сможет обеспечить объединение до 64 активных станций в сеть с максимальной скоростью передачи информации пользователю в два мегабайта в секунду.

11. Системы прямого вещания (СПВ) могут существенно уменьшить стоимость передачи телевизионных программ заказчику, особенно в обширных районах с низкой плотностью населения, что характерно для Российской Федерации. Небольшие терминалы, связанные со спутниками СПВ на геостационарной орбите (ГСО), легко использовать, что позволяет получить большее число каналов высокого качества, чем с помощью наземных систем. Первый спутник системы ГАЛС был запущен Российской Федерацией в 1994 году, а второй - в 1995 году. Разрабатываемый на 1988-2000 годы новый спутник ГАЛС-Р16 сможет обеспечить 16 передающих лучей в диапазоне 18/12 гигагерц. Он предназначается для обслуживания главным образом европейских районов страны, и его активный срок службы возрастет с семи до десяти лет. С помощью индивидуального приемника с антенной диаметром 50-90 см можно будет принимать до 4 аналоговых и 32 цифровых телевизионных программ.

В Японии создается коммерческая компания, которая будет осуществлять экспериментальное 12. цифровое вещание и регулярное цифровое обслуживание СПВ почти по 100 каналам. Многие вещательные компании в Европе, Азии и Южной Америке также уже обеспечивают цифровое обслуживание СПВ или готовятся к этому. В августе 1995 года на геостационарную орбиту в плоскости 116 градусов восточной долготы был запущен первый спутник "Кореасат", а второй - в январе 1996 года. Каждый спутник "Кореасат" имеет три ретранслятора СПВ с частотой 27 мегагерц и мощностью 120 ватт и осуществляет трансляцию посредством сфокусированных передающих лучей на частоте 12 гигагерц. Благодаря этому на территории Республики Кореи высококачественный телевизионный сигнал можно принимать с помощью антенны диаметром лишь 40 см, а в соседних странах, где проживает много корейцев, достаточно использовать антенну диаметром 1 метр. Эта система может поддерживать будущую передачу информации со скоростью два мегабайта в секунду. С помощью этой системы можно будет организовать такое обслуживание, как закупки на дому, дистанционное обучение, рассылка электронных газет, передача неподвижных изображений, игровых программ и караоке. Кроме того, в настоящее время разрабатывается система телевидения высокого разрешения (ТВВР), которая пройдет пробное испытание в 1999 году и будет использоваться для показа чемпионата мира по футболу 2002 года.

13. Поскольку цели программы Соединенных Штатов Америки "Полет на планету Земля" заключается в том, чтобы расширить научные знания о земных системах, распространять информацию и обеспечить продуктивное использование в частных секторах научно-технических результатов, которые будут получены при этом, создание сетей и систем архивирования данных составляет неотъемлемую часть исследовательского компонента этой программы. Примерно 10 000 ученых и 100 000 пользователей, не являющихся учеными, будут иметь доступ к данным, полученным с помощью армады международных и национальных спутников, наземных платформ и из многих коммерческих источников. Помимо основной системы информации и данных наблюдения Земли в рамках программы "Полет на планету Земля" будут использоваться различные сети и архивы для распространения и хранения всех соответствующих данных. Например, в рамках совместной инициативы Японии и Соединенных Штатов будет создана глобальная информационная сеть наблюдения для укрепления двустороннего сотрудничества в использовании информационных сетей для наблюдения Земли.

14. Цели исследований, проводимых в рамках Международной программы по геосфере-биосфере (МПГБ), заключаются в том, чтобы заложить основу для определения того, как функционируют системы Земли, и создать потенциал практического прогнозирования для принятия эффективных ответных мер. Использование новых возможностей для сбора данных в глобальном масштабе будет осуществляться в рамках системы данных и информации МПГБ (МПГБ-СДИ). Эта система не является обычной информационной системой и не располагает крупными массивами данных или компьютерными средствами. Ее роль состоит в том, чтобы выявлять основные пробелы в глобальных данных для целей исследования глобальных изменений и определять национальные или

международные учреждения, которые готовы принять меры для устранения таких пробелов. Основное внимание в рамках МПГБ-СДИ будет уделяться космическим наблюдениям в силу того, что они могут обеспечить глобальный охват.

15. Чрезвычайно важное значение имеет активное участие и вклад развивающихся стран в изучение глобальных изменений. Прежде всего, развивающиеся страны сами вызывают значительные экологические изменения. Рост их населения оказывает воздействие на окружающую среду, что проявляется в обезлесении и эрозии почв под влиянием антропогенной деятельности, сельскохозяйственного развития и других факторов. Их экономика базируется главным образом на природных ресурсах, а стратегия их экономического развития зачастую основывается на быстром росте и низкой производительности труда. В результате этого развивающиеся страны сталкиваются с серьезными глобальными экологическими проблемами, такими, как сокращение растительного покрова, деградация земель, природные бедствия и загрязнение окружающей среды. Поэтому их национальным интересам отвечает участие в программах в области глобальных изменений, и они также должны вносить свой вклад в деятельность международного сообщества в этой области.

16. Китай вносит значительный вклад в изучение глобальных изменений. В 1987 году был учрежден Китайский национальный комитет по климатическим изменениям, а в 1988 году -Китайский национальный комитет по МПГБ. Проведением экологических исследований занимается целый ряд национальных институтов. В настоящее время осуществляются такие научно-исследовательские проекты, как: исследование по прогнозированию тенденций в экологических системах жизнеобеспечения в Китае на предстоящие 20-50 лет; динамические процессы и прогнозирование тенденций в области экологических изменений в засушливых и полузасушливых районах Китая; исследование глобальных экологических изменений в Антарктике; полевые эксперименты в бассейне реки Хайхэ по изучению взаимодействия между атмосферой и поверхностью Земли; эксперименты по изучению океанических течений в тропической зоне западной части Тихого океана и исследования в области формирования, развития и экологической трансформации экосистемы в Сычуаньской впадине.

17. Всемирная информационная сеть WWW, которая служит главным образом для распространения (текстовой, видео и звуковой) информации и данных, в настоящее время начинает использоваться также для распространения программного обеспечения и расширения компьютерных возможностей. Язык программирования Java позволяет теперь выводить не зависящее от платформ программное обеспечение на страницы WWW. После этого программное обеспечение работает в компьютере клиента, используя просмотровую программу WWW для выгрузки информации из узла локальной сети. Это устраняет все проблемы, связанные с передачей программного обеспечения в удаленные места и его использованием в таких местах. Европейский координационный центр при обсерватории, оснащенной космическим телескопом Хаббла, на экспериментальной основе начал использовать язык программирования Java повышения практической полезности и эффективности применения WWW в астрономии. При этом долгосрочная цель заключается в том, чтобы переложить выполнение таких задач, как калибровка данных, на компьютер пользователя.

18. Следующим этапом после решения проблем, связанных с индивидуальным автоматизированным рабочим местом, будет, по-видимому, работа с исследовательской станцией. Станция обычно представляет собой мощный местный процессор, подключенный (через сети с протоколами высокого уровня передачи данных) с другими машинами и базами данных, а также информационными центрами. Она имеет конфигурируемый под индивидуальные потребности пользователя интерфейс, который обеспечивает последовательный и эффективный доступ ко всем услугам и функциям. При этом упор делается на визуальное отображение и построение концептуальных моделей. Это может быть реализовано с использованием многочисленных экранов, устройств с большим экраном (имитатор полета) или видеомагнитофонов.

# II. ПРОЧИЕ НАУЧНО-ТЕХНИЧЕСКИЕ ДОКЛАДЫ

### А. Космический мусор

19. Национальный центр космических исследований Франции (КНЕС) продолжал свои эксперименты по наблюдению за космическим мусором с использованием телескопа Шмидта диаметром 1,5 метра в Обсерватории на Лазурном берегу. С помощью этого телескопа можно обнаружить на геостационарной орбите фрагменты мусора размером до 20 сантиметров. Первые исследования с использованием фотографической пленки и сканирующего устройства проводилось в 1996 году, а в 1997 году были проведены испытания камеры, оснащенной прибором с зарядовой связью (ПЗС). Оптическим наблюдением за объектами на геостационарной орбите занималась также японская Лаборатория исследований в области связи с использованием телескопа диаметром в 1,5 метра с камерой ПЗС в Коганеи, Токио.

20. Несколько японских исследовательских групп провели послеполетный анализ космического летательного аппарата (КЛА), который был доставлен на Землю многоразовым транспортным космическим кораблем Соединенных Штатов Америки "Спейс шаттл" после десяти месяцев пребывания КЛА на орбите. Был проведен анализ в общей сложности примерно 20 квадратных метров поверхности КЛА, на которой остались следы от столкновений с фрагментами космического мусора. В ходе визуального обследования было обнаружено в совокупности 337 следов столкновений диаметром более 200 микрон, а при обследовании с использованием приборов с высокой разрешающей способностью - 180 следов столкновений на отдельных участках. Максимальный диаметр следа, оставшегося в результате столкновения, составил около 13,4 мм, при этом кратер от удара составил 2,5 мм в диаметре.

21. В Управлении оборонных исследований Соединенного Королевства Великобритании и Северной Ирландии осуществляемый комплексный набор программ по эволюции космического мусора объединяет в себе детерминистское моделирование поведения фрагментов диаметром свыше 10 см и стохастическое моделирование для фрагментов размером менее 10 см. По контракту ЕКА в Пизанском университете, Италия, в настоящее время разрабатывается полудетерминистская модель для долгосрочного анализа состава космического мусора. Модель Назаренко, разработанная в Российской Федерации, позволяет определять пространственное распределение плотности и скорости на основе каталога элементов космического мусора Российской Федерации и Соединенных Штатов Америки. В КНЕС особое внимание уделяется воздействию фрагментов космического мусора на хрупкие материалы (стекло и кремний), в результате чего может образоваться большое количество мелких частиц (вторичные столкновения). Масса вторичных частиц может в 1000 раз превысить массу первичных частиц.

22. В Германии моделирование поведения космического мусора финансируется Национальным министерством исследований и технилогии и Германским космическим агентством. Работа проводится Институтом механики полета и космической технологии Брауншвейгского технического университета (ИФР/ТУБС), при этом ИФР разработал по контракту с Европейским центром космических операций (Дармштадт) эталонную модель метеоритного и космического мусора ЕКА (MASTER). Эта модель позволяет проводить имитационные исследования как фрагментов антропогенного мусора, так и естественных метеоритов (моделированием распределения метеоритов занимался Институт аэрономии им. Макса Планка в Хайдельберге, Германия).

23. За период с 1990 года финансируемое правительством сотрудничество между ТУБС и Космическим центром им. Джонсона Национального управления по аэронавтике и исследованию космического пространства (НАСА) привело к плодотворному обсуждению методов моделирования и результатов, полученных обеими сторонами с использованием их собственных моделей. Модель CHAIN, первоначально разработанная ТУБС в 1993 году, была сохранена и усовершенствована в Космическом центре им. Джонсона, а в ТУБС была разработана улучшенная европейская модель CHAIN (CHAINEE). Существующие коды можно использовать для выявления относительных тенденций, связанных с конкретными мерами по уменьшению засоренности и защите от космического мусора, а более точные оценки можно будет впоследствии провести с использованием модели EVOLVE.

24. Программа Соединенных Штатов в области орбитального мусора призвана обеспечить безопасность полетов пилотируемых космических аппаратов, защитить национальные активы и

A/AC.105/673 Page 6

инвестиции в космическом пространстве от орбитального мусора и наконец обеспечить долгосрочное сохранение космической среды. Для прогнозирования нынешних и предстоящих опасностей, создаваемых космическим мусором для запусков космических аппаратов на низкую околоземную орбиту, используется модель образования орбитального мусора ORDEM. Для пилотируемых полетов многоразового транспортного космического корабля и для будущей международной космической станции Соединенные Штаты Америки осуществляют специальную программу дополетной оценки опасности столкновений с метеоритами и фрагментами орбитального мусора и послеполетной оценки причиненного ущерба. С помощью компьютерного кода BUMPER можно определить вероятность уровней конкретного ущерба, причиняемого столкновениями с космическим мусором, за счет ввода соответствующих начальных и конечных данных.

25. Страны, осуществляющие запуск космических объектов, должны разрабатывать и осуществлять на многосторонней основе меры по ограничению образования космического мусора. Национальное агентство по освоению космического пространства Японии (НАСДА) приняло 28 марта 1996 года стандарт для уменьшения засоренности и защиты от космического мусора NASDA-STD-18. Этот стандарт предусматривает принятие следующих мер: обезвреживание космического аппарата и верхних ступеней ракет по завершении программы полета; перевод космического аппарата и верхних ступеней ракеты на более высокую орбиту по завершении намеченной программы; перевод объектов на геостационарную переходную орбиту, с тем чтобы не создавать угрозы для геостационарной орбиты; сведение к минимуму количество космического мусора, высвобождаемого во время обычных запусков; и удаление космического аппарата по завершении намеченной программы с низкой околоземной орбиты.

26. При всех запусках, осуществляемых КНЕС, применяются строгие меры для уменьшения засоренности и защиты от космического мусора. Основное требование заключается в том, чтобы из всей полезной нагрузки на орбите оставалось не более одной единицы обезвреженного мусора. Это означает верхнюю ступень ракеты-носителя в случае одиночного пуска и верхней ступени со стыковочным элементом в случае двойного пуска. Отделение полезной нагрузки от последней ступени ракеты-носителя "Ариан-4" не должно сопровождаться образованием какого-либо иного мусора (пиротехническое отделение должно быть чистым, а остатки болтовых соединений должны быть уловлены). Обычное использование верхней ступени не должно сопровождаться образованием других видов мусора; поэтому следует избегать использования твердого топлива на орбите и после выхода из строя аккумуляторных батарей и элементов они не должны взрываться. Для обезвреживания верхней ступени в ее конструкцию необходимо добавить пиротехнические клапаны для опорожнения топливных емкостей и снижения внутреннего давления.

27. В 1993 году был официально создан Межчережденческий координационный комитет по космическому мусору (МККМ) для обмена информацией об исследованиях в области космического мусора, проводимых космическими агентствами стран, входящих в состав этого комитета; для рассмотрения хода осуществления совместных мероприятий; для расширения возможностей по сотрудничеству в исследовании проблемы космического мусора; и для поиска путей уменьшения засоренности и защиты от космического мусора. Основателями этого Комитета являются ЕКА, Япония, НАСА и Российское космическое агенство. В 1995 году в МККМ вступил Китай, а в 1996 году его примеру последовали Британское космическое агенство, КНЕС и Индийская организация космических исследований. Официальные совещания МККМ проводятся примерно один раз в год. Все решения МККМ принимаются консенсусом.

28. В Российской Федерации главным направлением исследований радиоактивного, химического и экологического загрязнения космического пространства является прогнозирование последствий столкновения отработавших ядерных источников энергии (ЯИЭ) и фрагментов космического мусора за время их длительного нахождения на орбите. Возможными последствиями столкновения космического мусора и реактора ЯИЭ, запущенного в космическое пространство и выведенного на довольно высокую орбиту, могут быть: разрушение (бериллиевого) радиаторного рефлектора реактора; разрушение корпуса радиационной защиты (гидрид лития); разрушение замкнутой системы охлаждения

и возможная утечка охладителя (натрий - калий); и разрушение компонентов структуры реактора ЯИЭ с последующей фрагментацией конструкционных материалов.

#### В. Использование ядерных источников энергии в космическом пространстве

29. Для поддержания заданных температурных условий и электроснабжения неболыших автономных станций проекта "Марс-96" были разработаны специальные радиоизотопные термоэлектрические генераторы (РТГ) и радиоизотопные нагревательные элементы (РНЭ), основанные на использовании плутония 238. Топливные элементы являются универсальными (каждый обладает тепловой мощностью примерно в 8,5 ватта), так что их можно также использовать в качестве основного источника тепла для термоэлектрического регулятора РТГ. Это упрощает конструкционные средства обеспечения безопасности как тех, так и других приборов, поскольку капсулы с плутонием 238 идентичны. Эти приборы разработаны и изготовлены в полном соответствии с Принципами, касающимися использования ядерных источников в космическом пространстве, принятыми Генеральной Ассамблеей в ее резолюции 47/68, а также национальными нормами безопасности Российской Федерации.

30. Космический зонд "Марс-96" был оснащен 18 РНЭ с общей массой двуокиси плутония не более 300 граммов (270 граммов плутония 238) и общей радиоактивностью примерно в 4 700 кюри. На каждой из двух небольших научных станций было установлено по два РТГ (каждый содержал один РНЭ) и два РНЭ для обогрева. Кроме того, каждый из двух аппаратов, которые должны были проникнуть в атмосферу Марса, был оснащен одним РТГ (снабжаемым энергией с помощью двух РНЭ) и тремя РНЭ для поддержания заданного температурного режима. Электроснабжение основного космического аппарата должно было обеспечиваться с помощью обычных панелей солнечных батарей.

31. Капсулы с радиоактивным материалом оснащены специальной защитой, способной выдержать взрыв и высокотемпературное пламя, образующееся при сгорании топлива космической ракеты "Протон", до 3 600 К в течение 4 000 секунд; вход космического аппарата в атмосферу на первой и второй космических скоростях (до 11 км/с); и столкновение с поверхностью Земли (в том числе с бетоном и твердыми породами) на скоростях до 80 м/с. Кроме того, таблетки двуокиси плутония (кермет) не растворяются в пресной и морской воде (на глубине до 10 километров), а также в щелочной и кислой среде. Высокая степень герметичности капсул была подтверждена в ходе наземных испытаний, которые проводились межучрежденческой комиссией экспертов с использованием моделей и полномасштабных образцов РНЭ.

32. Запуск космического зонда "Марс-96" с международным научным оборудованием на борту для проведения комплексных исследований Марса был произведен 16 ноября 1996 года в 20 ч 49 м всемирного времени с космодрома Байконур. Двигатели космической ракеты "Протон" работали в соответствии с программой полета; однако, когда произошло первое запланированное зажигание специального ускорителя, второе зажигание не сработало и аппарат с зондом "Марс-96" остался на низкой околоземной орбите. Автоматические системы космического аппарата произвели отделение от ускорительного устройства и включили его двигатель, однако мощности его оказалось недостаточно для перехода на существенно более высокую орбиту. Ускорительное устройство было точно отслежено на его низкой орбите, и 18 ноября 1996 года в 1 ч 20 м всемирного времени оно распалось над Тихим океаном в нескольких тысячах километрах на восток от Австралии (примерно 51 градус южной широты и 168 градусов западной долготы).

33. Отслеживание зонда "Марс-96" не производилось на непрерывной основе, и место его распада определить было гораздо сложнее. После тщательного анализа имеющейся информации было установлено, что зонд, в том числе радиоизотопные капсулы, вошел в атмосферу 17 ноября 1996 года примерно в 1 ч 00 м всемирного времени по завершении своего третьего оборота вокруг Земли. Вероятная зона его падения находится в Тихом океане в пределах от 800 до 200 километров вдоль орбиты, к западу от побережья Чили, с центром в 25,1 градусах южной широты и 75,4 градусах западной долготы.

34. После аэродинамического разрушения космического аппарата "Марс-96", а также алюминиевых и стальных конструктивных элементов РТГ при входе в атмосферу капсулы с двуокисью плутония упали в зоне падения остальных фрагментов практически в неизменной форме. Поскольку высвобождения двуокиси плутония в окружающую среду не отмечалось, любая возможность радиоактивного заражения и радиологического воздействия на людей исключается. Нахождение РНЭ на дне Тихого океана на значительной глубине следует рассматривать как экологически безопасное удаление относительно небольшого количества плутония 238.

### С. Дистанционное зондирование и глобальная среда

35. Комитет по спутникам наблюдения Земли (КЕОС) последовательно занимается разработкой комплексной глобальной стратегией наблюдения в целях обеспечения более эффективного использования инвестиций в этой области и обеспечения мирового спроса на комплексный набор приборов для сбора и распространения соответствующих данных, а также создания и распространения информационной продукции. Существующие системы, как видно, не обеспечивают удовлетворения этого спроса. Можно добиться более эффективного удовлетворения потребностей пользователей на основе укрепления межучрежденческой координации и сотрудничества. Разрабатываемая стратегия призвана объединить межучрежденческое планирование экономичных наземных систем, обеспечить взаимную калибровку приборов, совместимость систем передачи данных и установление более тесных связей между пользователями и поставщиками информации. Предоставление услуг должно отвечать интересам удовлетворения социальных, экономических и экологических потребностей пользователей. Развивающиеся страны рассматриваются в качестве как поставщиков, так и пользователей информации.

36. В результате учреждения в 1989 году Королевского центра по дистанционному зондированию (ЦРТС) Марокко совершила важный шаг на пути создания потенциала для подготовки космической информации. В обязанности ЦРТС, наряду с выполнением различных задач, связанных с исследованием космического пространства, входит распространение снимков, полученных с помощью спутников, и централизация национальной регистрации спутниковых данных и данных полученных с помощью космических систем дистанционного обнаружения и географических информационных систем. В настоящее время в Марокко рассматривается или осуществляется ряд проектов с применением упомянутой технологии в связи с необходимостью удовлетворения потребностей в области учета и рационального использования природных ресурсов, охраны окружающей среды и освоения земель. ЦРТС занимается также организацией разработки первого национального экспериментального микроспутника с полезной нагрузкой, состоящей из оборудования для связи и дистанционного зондирования. Эта работа проводится в сотрудничестве с Берлинским технологическим университетом, который предоставляет для осуществления этого проекта платформу TUBSAT-C. Ожидается, что установка систем для этого проекта будет завершена в 1997 году.

#### D. Космическая медицина и материаловедение

37. Крупные успехи, достигнутые за последние несколько лет в области кристаллизации протеинов в микрогравитационных условиях, породили надежды на создание медикаментов, которые позволят лечить болезнь Чагоса, инфекционное заболевание, распространенное в большинстве сельских районов Центральной и Южной Америки. С 1984 года в ходе целого ряда полетов космического корабля многоразового использования НАСА "Спейс шаттл" были проведены эксперименты по кристаллизации и было разработано необходимое оборудование. В феврале 1996 года во время осуществления программы STS-75 для многоразового транспортного космического корабля "Колумбия" был проведен первый медицинский эксперимент, разработанный латиноамериканскими учеными. В течение 16 дней выращивались кристаллы специального фермента, подсоединенного к паразиту, который является переносчиком этого заболевания. На основе полученных результатов подготовлены новые эксперименты для программы STS-83 в апреле 1997 года. Участвующие ученые из Аргентины, Бразилии, Коста-Рики, Мексики, Соединенных Штатов Америки, Уругвая и Чили надеются, что применение рациональной системы создания медикаментов приведет к разработке нового лекарства от этого безсимптомного, но смертельного заболевания.

#### Е. Астрономия и изучение планет

38. Японский институт космонавтики и аэронавтики с помощью ракеты-носителя М-V произвел 12 февраля 1997 года успешный запуск спутника с оборудованием для интерферометрии со сверхдлинной базой (MUSES-B) (на орбите он носит название HALCA, что означает - современная лаборатория связи и астрономии). С созданием этой новой ракеты-носителя японская космонавтика вступила в новую эру осуществления крупных проектов, включая изучение Солнца и других планет. Уже принято решение о запуске с помощью ракеты-носителя М-V еще пяти космических аппаратов: LUNAR-A для исследования Луны (финансовый 1997 год); PLANET-B для исследования Марса (финансовый 1998 год); ASTRO-E - спутника для проведения астрономических наблюдений с использованием рентгеновского излучения (финансовый 1999 год); MUSES-C для взятия образцов астероидов (финансовый 2001 год); и ASTRO-F для проведения астрономических наблюдений в диапазоне инфракрасного излучения (финансовый 2002 год).

39. Первой программе ЕКА по изучению in situ среды ядра кометы и ее эволюции внутри солнечной системы дано название "Розетта". В рамках этой программы будет проведено тщательное исследование ядра кометы и прилегающей к ней среды на основе использования заложенных в ней уникальных возможностуй для анализа проб, что в значительной мере позволит решить задачи первоначальной программы по отбору проб кометного вещества. Научная программа орбитальной станции "Розетта" была определена и одобрена Комитетом по научной программе ЕКА на его совещании, состоявшемся в феврале 1996 года. Научная программа "Розетта", предполагает проведение 11 исследований. Австрия в сотрудничестве с исследователями из шести других государств отвечает за подготовку эксперимента под названием "Система анализа микроизображений космической пыли" - MIDAS. Эксперимент MIDAS считается важнейшим в программе "Розетта", поскольку он позволяет впервые получить трехмерное изображение частиц космической пыли в нанометровом-микрометровом диапозоне.

40. Стало очевидным, что действующие и отработавшие космические аппараты, а также крупные фрагменты отслеживаемого космического мусора являются главными причинами образования следа - прохождение объекта в поле зрения астрономического телескопа, которое регистрируется как фотографически (при изучении глубокого космоса), так и фотометрически. Качество снимков глубокого космоса резко снижается, результаты фотометрических наблюдений становятся недействительными и постоянно существует опасность повреждения чувствительных датчиков. В июне 1996 года Научно-исследовательская лаборатория ВМС Соединенных Штатов Америки произвела запуск экспериментального двойного спутника TIPS, два компонента которого связаны четырехкилометровым фалом. При таких размерах TIPS может образовать не только след, но и пятно, соразмерное полю зрения телескопа ПЗС, который широко используется профессиональными астрономами и любителями.

41. В 1996 году было объявлено, что Организация Объединенных Наций по вопросам образования, науки и культуры отказывается от идеи создания "Звезды терпимости" в ознаменование своей 50-ой годовщины. Предполагалось, что эта система будет состоять из двух блестящих шаров, соединенных друг с другом двухкилометровым фалом на орбите на высоте 1 250 км. Хотя, как и TIPS, она будет видна главным образом в сумерках, она может также появляться в темном небе и быть такой же яркой, как и Сириус. К сожалению, эта идея может вновь возродиться при праздновании нового тысячелетия. Осуществление этого проекта может иметь катастрофические последствия в том смысле, что он может быть воспринят как свидетельство допустимости использования рекламы из космоса. Все астрономическое сообщество высоко оценило отрицательную позицию, решительно занятую ЕКА в отношении этого проекта.

#### Примечания

<sup>1</sup>Официальны е отчеты Генеральной Ассамблеи, пятьдесят первая сессия, Дополнение № 20 (А/51/20), пункт 115.

A/AC.105/673 Page 10

# Annex\*

# SCIENTIFIC AND TECHNICAL PRESENTATIONS TO THE SCIENTIFIC AND TECHNICAL SUBCOMMITTEE AT ITS THIRTY-THIRD SESSION

# CONTENTS

| I. S<br>G                                    | YMPOSIUM ON SPACE SYSTEMS FOR DIRECT BROADCASTING AND<br>LOBAL INFORMATION SYSTEMS FOR SPACE RESEARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                 |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| A<br>B<br>C<br>D<br>E                        | <ul> <li>Satellite Radio and Digital Broadcasting</li> <li>Satellite Multimedia and Broadcasting Services.</li> <li>Direct Satellite Television Broadcasting in the Russian Federation</li> <li>Satellite Digital Television Broadcasting Systems</li> <li>International Networks and Satellite Data Archiving Systems for Mission to</li> </ul>                                                                                                                                                                                                                           | 11<br>12<br>13<br>13                               |
| F.<br>G                                      | Planet Earth          Data and Information System on Global Climate Change          The Role of Developing Countries in Programmes on Global                                                                                                                                                                                                                                                                                                                                                                                                                               | 14<br>14                                           |
| Н                                            | Environmental Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15<br>15                                           |
| II. O                                        | THER SCIENTIFIC AND TECHNICAL PRESENTATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                 |
| A<br>B<br>C<br>D<br>E.<br>F.<br>G<br>H<br>I. | <ul> <li>Measurements of Space Debris</li> <li>Modelling of the Space Debris Environment and Risk Assessment</li> <li>Space Debris Mitigation Measures</li> <li>Collisions of Nuclear Power Sources with Space Debris</li> <li>Collisions of Nuclear Power Sources in Outer Space</li> <li>The Use of Nuclear Power Sources in Outer Space</li> <li>International Cooperation in Space Research and Applications</li> <li>Space Medicine and Materials Science</li> <li>Astronomy and Planetary Exploration</li> <li>Adverse Environmental Effects on Astronomy</li> </ul> | 16<br>17<br>18<br>20<br>20<br>22<br>23<br>24<br>26 |
| Appendix                                     | . List of scientific and technical presentations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                 |

\*This annex has not been formally edited.

\_\_\_\_\_

# I. SYMPOSIUM ON SPACE SYSTEMS FOR DIRECT BROADCASTING AND GLOBAL INFORMATION SYSTEMS FOR SPACE RESEARCH

#### A. Satellite Radio and Digital Audio Broadcasting

The primary functions of any broadcast medium are to provide information, entertainment and education. Radio was the primary mode of news broadcast for a long time until the advent of television. But even today some users still rely more on radio news than any other medium. The popularity of some radio channels is linked to their easy accessibility and the quality of their news coverage. In developing countries, radio is the major source of information for large segments of the illiterate, and it caters to communication needs in development, with broadcasts targeted for rural audiences on agricultural practices, agro-products, animal husbandry, health, hygiene and the like. Radio also fulfills a very important social objective of broadcasting educational programmes, especially for school children. The distance education system, which began in the '60s, has adopted a multi-media approach to reach students. Radio also provides, sometimes even in an interactive way, special services such as counselling to farmers, industrial workers, women, youth and children.

Worldwide, the number of radio sets runs into the billions. But as with other elements of the communications infrastructure like the telephone and the television, the number of radio sets per thousand population shows significant variations between countries, depending on their economic status (from 1,050 in developed countries to around 180 in the developing ones). There are certain countries where 30 percent of the territory is not covered by any domestic radio station. The present day radio systems are predominantly analogue and broadcast by terrestrial systems. Satellite systems are used mostly for wider programme distribution by rebroadcasting or to serve the cable head-ends. It will take some time before digital satellite systems take over because the costs of the existing infrastructure have to be fully recovered and the cost of digital receivers will be high during the initial periods.

Advances in compression techniques and digital signal processing chips have enabled the introduction of compressed audio at bit rates significantly lower than uncompressed audio without decreasing the quality. Two distinct approaches related to digital sound broadcasting (DSB) coding and modulation methods have emerged. The Eureka 147 (ITU-R SYSTEM A) digital audio broadcast (DAB) system consists of analogue to digital conversion, compression through source coding, convolutional coding, data multiplexing, and time and frequency interleaving with differential modulation of a number of carriers. The main advantage of this system is that it is largely immune to multipath propagation effects because different carriers constructively enhance each other.

The second system, called IN-BAND (ITU-R SYSTEM B) digital audio radio (DAR) system and developed in the United States, is required to operate simultaneously with terrestrial frequency and amplitude modulated systems in the frequency channels allocated to the latter (this is why it is called "inband"). The DAR services conform to the prevailing regulations on interference and power spectral density. Some of these systems use new source coding and bit reduction techniques, forward error correction, time and frequency interleaving and shaped guard band pulses. An auxiliary data channel is also provided. SYSTEM B is a single-channel-per-carrier system which can operate over a wide range of data rates. It allows a service provider to use only as much transmitter power and bandwidth as necessary for the selected service quality.

The world's first operational terrestrial DAB was introduced in September 1995 and currently more than 25 pilot service trials and field tests at VHF and in L-band are being introduced in 13 European countries, with plans to begin pre-operational terrestrial services this year. Outside Europe, tests are being conducted in Australia, Canada, China, India, Mexico and the United States of America. It is expected that by 1998, when the initial DAB systems are established, about 100 million people will be covered in Europe using hardware from different manufacturers at hopefully affordable prices.

Satellite sound broadcasting (SSB) has been the subject of discussion over the past twenty years and has been viewed as the potential candidate for reaching the vast majority of people not adequately covered

by either good quality audio or an adequate number of channels. A number of studies and experiments have been conducted, especially in Canada, France, Germany, Japan, United Kingdom of Great Britain and Northern Ireland and United States. In the early '80s, the emphasis was on the use of analogue frequency modulation (FM), which required large-powered satellites or large on-board antennas to provide an adequate number of channels. During the '90s, the emphasis shifted to digital techniques that did not demand as much power or antenna areas.

A logical extension of the terrestrial Eureka 147 system would be to consider the same scheme for satellite systems as well. Substantial space segment resources are required for the implementation of satellite DAB (S-DAB). To provide a sufficiently-high ground elevation angle in Europe, the proposed Archimedes system is considering an eight-hour highly elliptic orbit (inclination 63 degrees, altitude 26,800 to 1,000 km) instead of the geostationary orbit (GSO). The L-band satellite trials were conducted in Mexico in 1995 using the Solidaridad satellite in GSO and a number of technical parameters were established for fixed and mobile reception. Similarly, satellite trials using Eureka 147 DAB were carried out in Australia via the Optus-B satellite in 1995.

Digital Sound Broadcasting System B provides digital sound and ancillary digital data broadcasting for reception by indoor/outdoor fixed and portable receivers and also by mobile receivers. It is designed for either satellite or terrestrial emission. Several audio compression schemes have been demonstrated via the TDRS satellite in the 2.1 GHz band. The implementation of a variant of the Digital System B is being carried out by World Space Inc. of the United States. The proposed AfriStar (to cover Africa) is planned for launch in 1998, followed by AsiaStar (to cover some regions in Asia) and CaribStar (for the Caribbean, Central America and South America). Each satellite can support, through three emission beams, 288 audio channels at 16 KB/s. The target is to provide audio channels of acceptable quality to fixed and portable receivers for those segments of population not adequately covered by the present system.

In India, studies on satellite digital sound broadcasting have been going on over the past few years. Since the inception of the INSAT system in 1983, the primary mode for radio programme distribution is via the satellite radio networking (RN) system. The cumulative monthly satellite transponder utilization for the 28 RN channels exceed 13,000 hours. In spite of its extensive radio network, India, with its varied population and languages, is looking towards ways of providing an adequate number of audio channels across the country. The GSAT-1 satellite scheduled for launch on the first development flight of India's Geostationary Satellite Launch Vehicle (GSLV) carries two high-powered S-band transponders so that it can provide a total of 96 audio channels. The availability of such a large number of channels is expected to revolutionize the radio broadcasting scenario in India. Apart from channels of general nature, dedicated channels for news, sports, different types of music, business information, development communications and others are also feasible. The digital nature of the system could provide a host of data broadcast services, such as dissemination of lecture notes to students of Open Universities, distribution of electronic newspapers, information by utility agencies or downloading large volumes of Internet data.

#### **B.** Satellite Multimedia and Broadcasting Services

The unprecedented exponential growth of the Internet, where the network size doubles every year, also created a similarly increasing demand for multimedia and broadcasting services. In Europe, there are over 22 million analogue television receivers, with 10 million digital receivers expected in the next three years. In the United States, 2.5 million digital receivers already exist and estimates for the end of the decade project 20 million units. Because integrated video, voice and computer applications demand more bandwidth, the terrestrial infrastructure—optical fibre networks, Integrated Service Digital Network (ISDN), advanced modulation techniques, compression and others—should substantially improve. This is also necessary for an optimal combination with emerging satellite systems, which are complementary to terrestrial systems and fundamental for the rapid global expansion of services.

For multimedia services, the use of the Ka-band (33 to 36 GHz) of the radio spectrum is steadily increasing. Since the United States' initial application for use of the Ka-band in 1995, EUTELSAT has applied for 12 orbital positions in this frequency region and ASTRA for 10 positions over Europe and

11 over the American and Asia/Pacific regions. Most of the Ka-band satellite systems utilize inter-satellite links and the typical subscriber terminal has a 60-70 cm diameter dish antenna. Typical data rates are 16 to 384 KB/s, but with larger dishes, rates up to 155 Mbps are possible. Since the protocols for data transmission on the Internet were designed for terrestrial networks, the introduction of GSO satellites with longer time delays and possibilities of errors during the signal fading will force their adaptation to these new conditions. This will enable efficient exploitation of the broadcast capacities of satellite systems, such as multi-casting web-based information (newspapers, magazines, stock exchange information), updating corporate databases, multi-casting e-mail or newsletters from head offices to branches, and distribution of new software. An experimental LAN Interconnection Satellite System (LISSY) is being developed by Joanneum Research and the University of Salzburg (Austria) under an ESA contract. It can accommodate up to 64 active stations in a network with a maximum user rate of 2,048 KB/s.

# C. Direct Satellite Television Broadcasting in the Russian Federation

Direct Broadcasting Systems (DBS) can significantly decrease the expense of delivering television programmes to the subscriber, particularly in large areas with low population densities, which is typical of the Russian Federation. Small terminals in connection with DBS satellites in GSO are easy to use and offer more high-quality channels than terrestrial systems. The first satellite of the GALS system was launched by the Russian Federation in 1994 and the second in 1995. They have an expected operation lifetime of five to seven years and carry up to three transponders transmitting in the 11.7-12.5 GHz band. Receiving antennas in the European regions should have a diameter of 60 cm, in other parts of the territory up to 150 cm. To make the commercial system cheaper, broadcasting is in the analog form with frequency modulation.

A new satellite, GALS-R16, which is under development for 1998-2000, should have 16 transmitting beams in the 18/12 GHz band. It is designed to serve mainly the European regions of the country and its active lifetime should be increased to seven to 10 years. Up to four analogue and 32 digital television programmes can be distributed to individual receiver sets with antenna diameters of 50 to 90 cm. This satellite system will also be available to foreign users. The Russian Federation is performing studies on data compression regarding the most effective algorithms of picture compression conforming to the MPEG-2 standard.

# D. Satellite Digital Television Broadcasting Systems

Digitalization, particularly new modulation and compression technologies, makes bandwidth utilization efficient and multi-channel DBS possible. The MPEG (Motion Picture Experts Group) standards were first published in November 1994 and modified in 1995. They specify all of the syntax and semantics of the data stream and decoding process, but not the coding process itself in order to allow future improvements. This technology can compress video data into less than 1/30th of the original and audio data into 1/6th of the original. Therefore, four to 10 television channels could be transmitted by a single 27 MHz transponder. At the same time, laser-disk-quality video and compact-disk-quality multichannel sound are possible. In addition, digital technology provides for easy interoperability with communications and computers so that multimedia integrated service and continuing improvements are possible. Among the benefits, there is the possibility of permanent storage of the programme into digital storage media, loss-less scrambling for pay television service and easy animation toward the virtual studio.

In Japan, a commercial company providing test digital broadcasting and regular digital DBS services with almost 100 channels is in the preparation stage. Also, many broadcasting companies in Europe, Asia and South America are already providing or preparing digital DBS services. The first Koreasat satellite was launched into GSO position at 116 East longitude in August 1995 and the second in January 1996. Each Koreasat has three 27 MHz, 120 Watt DBS transponders and concentrated transmission beams at 12 GHz frequency. Therefore, within the territory of the Republic of Korea, a high-quality television signal can be received with only a 40 cm dish and in neighbouring countries where many Koreans live, a one metre antenna is sufficient. The system could support future data broadcasting service up to 2 Mbps. This could provide for services like home shopping, remote education, electronic delivery of

newspaper, still pictures, game programmes and Karaoke. Furthermore, a high definition television system (HDTV) is being developed for trial service in 1999 and for the 2002 World Cup.

#### E. International Networks and Satellite Data Archiving Systems for Mission to Planet Earth

Since the objectives of the United States Mission to Planet Earth (MTPE) are to expand scientific knowledge of the Earth system, disseminate this information and enable the productive use of MTPE science and technology in the private sectors, networking and data archiving systems are an inseparable part of this research endeavour. About 10,000 science and 100,000 non-science users will be searching through data obtained by an armada of international and national satellites, *in situ* platforms and many commercial providers.

MTPE Science Themes for 1996-2002 comprise: land cover and land use research; seasonal-tointerannual climate variability and prediction; natural hazards research and applications; long-term climate (natural variability and change research); and atmospheric ozone research. In addition to the main Earth Observation Data and Information System (EOSDIS), MTPE will use different networks and archives to distribute and archive all relevant data. For example, a Global Observation Information Network (GOIN) will be established according to a joint United States-Japanese initiative to strengthen bilateral cooperation in Earth observation information networks. NASA is one of the participants from the United States and the goal of GOIN is to achieve comprehensive connectivity and interoperability among existing and planned networks.

The MTPE programme would also use the International Directory Network (IDN), sponsored by the Committee on Earth Observation Satellites (CEOS) Access Subgroup. The IDN provides open, on-line access to information on Earth science, space physics and other disciplines. It contains descriptions of data located in archives held by universities, government agencies and other organizations. NASA serves as the American Coordinating Node of IDN. Similarly, the CEOS Catalog Interoperability Experiment (CINTEX), designed to demonstrate interoperability through international data exchange, would be used in MTPE as well. A common interface, designed for access from Germany, Italy and United Kingdom to the EOSDIS, has already successfully demonstrated interoperability.

#### F. Data and Information System on Global Climate Change

The objectives of the International Geosphere-Biosphere Programme (IGBP) research are to provide the foundation for determining how the Earth system functions and to develop practical predictive capabilities for effective policy responses. Observations and models are key items in the process; existing and emerging knowledge has to be made available to all and properly disseminated. Therefore, IGBP has established mechanisms to define research priorities in global change, open traditional disciplinary barriers, and coordinate national efforts and resources. The exploitation of new opportunities to gather data on a global scale is critical in this process. This includes remote sensing from space, new ground-based initiatives and the use of information technology for data processing and dissemination. The objective of the IGBP-DIS (Data and Information System) Framework Activity is "to improve the supply, management and use of data and information that are needed to attain IGBP's scientific goals". This is achieved by carrying out activities leading to the generation of global data sets and ensuring the development of effective data and information systems for IGBP.

IGBP-DIS is not a conventional information system and does not have large data sets or computer facilities. Its role is to identify key global data deficiencies for global change research and to identify national or international agencies ready to implement remedial responses. Because of their very global nature, space observations have represented a major focus of interest in IGBP-DIS. Its structure consists of the Scientific Steering Committee, the Project office in Toulouse, France, and has three focuses: data set development; data management and dissemination; and data coordination and international context.

One of the new approaches in data retrieval takes into account that the user increasingly wants to broaden his/her data sources and get away from the focus on a single instrument (so-called data fusion).

Also, the user wants to be in a position to quickly assess the availability of a wide range of data and products over a particular area and/or period of interest. To this end, "one-stop shopping" and "data harvesting" concepts are taken as starting points. Data harvesting means that metadata are automatically retrieved and assembled in a logical homogenous data base. This highly facilitates standard queries.

# G. The Role of Developing Countries in Programmes on Global Environmental Change

The active involvement and contributions of developing countries to the study of global change is crucial. First of all, developing countries are causing significant environmental change. They have tremendous populations, which influences the environment (deforestation, human erosion of soil, rural agriculture, among others). Their economies are mostly based on natural resources and economic development strategies often assume rapid growth and low productivity. Because of this, developing countries have to face serious global environmental problems such as vegetation coverage decrease, land degradation, serious natural disasters and environmental pollution. Therefore, developing countries have to participate in global change programmes out of their own national interest and also to make their contribution to the international community.

China has made substantive contributions to global change studies. The Chinese National Climate Committee was founded in 1987 and the Chinese National Committee for IGBP in 1988. A number of national institutions are conducting environmental research. Some of the specific on-going research projects include: predictive study on trends in the life-supporting environment in China over the next 20 to 50 years; dynamic processes and prediction of trends in environmental changes in arid and semi-arid regions of China; global environmental change research in Antarctica; the Heihe river basin field experiment on the atmosphere-land surface interaction in western China; experiments on ocean circulation of the tropical western Pacific; and studies on the formation, evolution and environmental changes of the ecosystem in the Qinghai-Tibetan Plateau.

# H. Software Packages and the Use of the World Wide Web

The ultimate goal of any research activity in space science (and science in general) is to generate a theoretical model, able to explain, in as simple as possible physical terms, the phenomenon being studied. To achieve this goal, a scientist needs data, data analysis software, display software; and modelling software. Most of these products, or at least some information on them, are available through the World Wide Web. The main problem of a researcher is how to select the optimal software and how to tailor it to particular needs. During the '80s, data analysis was mainframe-based and computational resources were expensive. Therefore, the users pushed for uniformity with the aim of having a minimum number of data analysis packages in order to maximize the efficiency of the system. Later on, it was realized that as long as a full description of the package exists, the user was able to implement it and only standard interfaces were needed. This can best serve the users, but it is not possible to provide even a partially complete list of available software.

Until now, the World Wide Web has been used for the distribution of information and data (text, video, sound). The Web is beginning to be used also for software distribution and computational capability. It has already become possible to access computational services through the Web: parameters are entered at the client site, the computation is done at the server site and the results go back to the client. The Java programming language now offers the possibility of linking platform-independent software to Web pages. This software then runs on the client machine, using the Web browser as the runtime environment and off-loading the server. This eliminates all the problems related to software distribution to remote sites and maintaining it there. It also eliminates all installation problems; all that is needed is a good Web browser. The Hubble Space Telescope European Coordinating Facility (ST-ECF) started to use Java experimentally to provide astronomically useful functionality on the Web. A long-term goal is to delegate tasks like data calibration to the client machine at the user site.

However, the hardware and software market is still developing vigorously. For image processing, the bottleneck is not processing speed but input/output transfer rate. Low-cost co-processors are available for

compute-intensive tasks. The most significant current development is the spread of computer networks on a global scale, and their application for tasks which were not initially envisaged. Computer networks are unexpectedly becoming indispensable for science activities like photocopiers and fax machines.

The next step after the personal workstation seems to be the research station. It consists of a powerful local processor which is connected (via high-bandwidth networks) to other machines and databases/knowledge bases. It has a configurable personalized user interface which allows access to all services and functions in a consistent and efficient manner. The emphasis is on visualization and conceptualization (model building). This can be realized through multiple screens, big screen projection ("flight simulator"), or through video recorders.

### **II. OTHER SCIENTIFIC AND TECHNICAL PRESENTATIONS**

#### A. Measurements of Space Debris

The French space agency CNES continued its experimental observation of space debris using the 1.5 metre Schmidt telescope of the "Observatoire de la Côte d'Azur". It should be able to detect 20 cm size debris in GSO. The first study using photographic films and scanner were performed in 1996, and tests of a CCD camera have been conducted in 1997. CNES is also developing on-board debris detectors to be implemented on commercial satellites in order to get telemetry data on the flux of meteoroids and space debris in different orbit. The feasibility study prepared in 1996 was followed by qualification model and flight model development for a flight on the Mir station in 1999. A complex data base is under development using the results of in-orbit experiments to get a reference for the improvement and validation of space debris models and a catalogue of consequences of impact of particles on different materials.

Optical observations of geostationary objects have been made by the Communication Research Laboratory of Japan using the 1.5 m diameter telescope with CCD camera in Koganei, Tokyo. Objects as small as 20 cm can theoretically be observed at GSO altitudes. As a collaborative study with the National Space Development Agency of Japan (NASDA), similar observations have been conducted since 1992 using the Schmidt telescopes of the Kagoshima Space Centre (KSC) and Kiso Observatory of the University of Tokyo. Experimental radar observations of satellites have been successfully demonstrated using the 20 metre antenna at KSC as a transmitting station and the 64 metre antenna at the Usuda Deep Space Centre. By means of modern communications technology, objects as small as 2 cm at 500 km altitude can be detected. Debris observations have been made by the Middle and Upper Atmosphere (MU) radar which has an active phased array antenna 103 metres in diameter and peak output power of 1 MW. The greatest advantage of the MU radar is its beam steerability, which makes it possible to observe variations of the radar scattering characteristics of unknown objects for a period of 20 seconds and to observe in different directions almost simultaneously.

Several Japanese study groups performed the post-flight analysis of the Space Flyer Unit (SFU) which was recovered by the U.S. Space Shuttle after 10 months in orbit. In total, some 20 square metres of exposed surfaces were available on SFU for analysis. The main surfaces consist of multi-layer insulation (MLI), second surface mirrors and the painted alloy structure. According to the preliminary results, no significant outgassing or off-gassing have been detected. A total of 337 impacts with diameters greater than about 200 micrometers have been observed in visual surveys, and 180 impacts in high-resolution surveys of selected surfaces. The diameter of maximum damage is about 13.4 mm, with an impact crater diameter of 2.5 mm.

#### B. Modelling of Space Debris Environment and Risk Assessment

The measurement of space debris does not cover the total debris size distribution in all altitude regimes of interest. In many cases, measurements provide only statistical information (e.g. number of objects passing the beam of a radar antenna). In order to understand the dynamics of the debris

population, it is essential to also analyse the time-dependent numbers of smaller objects. Finally, relying only on measurements is not sufficient to understand the sources and dynamics of the debris population and to analyse the risk for future missions. A detailed analysis of future scenarios and of the effectiveness of debris minimization and mitigation measures can be performed only by using space debris population models. The space debris environment is currently modelled in many countries.

In the Defence Evaluation Research Agency of the United Kingdom, the Integrated Debris Evolution Suite (IDES) combines deterministic modelling of particles over 10 cm size with stochastic modelling for particles below 10 cm. Altitudes covered are from 100 to 2000 km. Orbital situations can be computed in one-month time steps to predict possible collision events (including catastrophic, damaging or just surface erosion effects). A semi-deterministic code SDM/STAT, for the long-term analysis of the debris population, is being developed under an ESA contact at the University of Pisa (Italy). It has features similar to CHAIN and is based on the background population which is modulated by traffic and mitigation dependent overlay populations. The Nazarenko Model (CPS) developed in the Russian Federation is a semi-analytical, stochastic model for medium and long-term forecast of the LEO debris environment. It provides spatial density and velocity distributions, based on Russian Federation and United States space catalogue data.

In CNES, special emphasis is given to impact of debris into fragile materials (glass, silicium) which can produce a great number of small particles (secondary impact). The mass of these secondary particles can reach 1000 times the mass of the primary particles. A study group at the Institute for Space and Aeronautical Sciences of Japan (ISAS) studied the debris flux as a function of altitude and showed that it peaks at the altitudes of 1000 and 1500 km and that the flux in the year 2000 should be twice the 1982 value. Since no fragments have been tracked in GSO, even though there have been at least three explosions there, models are extremely important for understanding the dynamics of objects in this region. According to the study performed at Kyushu University, the estimated number of objects that regularly cross the geostationary band depends mainly on the explosion rate, followed by the rate of re-orbiting the satellite at the end of lifetime. Therefore, the passivation measures for spacecraft are necessary to reduce the possibility of explosion on GSO.

In Germany, the space debris modelling is financed by the German Ministry of Research and Technology and by the German Space Agency (DARA). The work has been carried out by the institute for Flight Mechanics and Spaceflight Technology (IFR) of the Technical University of Braunschweig (TUBS), Germany. Based on these activities IFR/TUBS has developed the ESA Space Debris Reference Model (MASTER) under a contract of the European Space Operation Centre in Darmstadt (ESOC). This model covers man-made debris and natural meteoroids (meteoroids distribution was modelled by the Max Planck Institute in Heidelberg, Germany). Since 1990, government-sponsored cooperation between TUBS and NASA Johnson Space Centre (JSC) led to fruitful discussions concerning the modelling approaches and the results obtained by both parties using their own tools. The debris models developed in Germany are concentrating on man-made objects larger than 0.1 mm; with respect to the risk posed to spacecraft, objects larger than 1 cm are of special interest.

For the purpose of long-term population modelling, the analytical computer code CHAINEE (CHAIN European Extension) was developed. This code describes the population and collision fragments up to an altitude of 2000 km using four altitude bins and six mass classes. The main advantage of CHAINEE is the extremely low computer time needed (approximately 10 seconds for a simulation of one hundred years); however, its low spatial resolution is a major disadvantage. Therefore, it is mostly a tool to analyse some basic effects of future scenarios. For detailed analysis, especially if a high resolution concerning the orbital altitude is required, a new tool called LUCA has been developed at TUBS. It combines the advantages of a high spatial resolution and a tolerable amount of computer time needed to run a simulation. In order to calculate the time-dependent collision risk, a special tool has been implemented, which analyses the geometry of the orbits of all population members and determines the probability that members of the population will have a collision. This tool is used once in a year of simulated time and guarantees that changes in the population properties are reflected in the collision

probabilities. This ability is also an enhancement with respect to the modelling methodology compared to the former programmes used.

The United States orbital debris programme is aimed to ensure safety of human space flight, protect national assets and investments in space from orbital debris and finally to ensure long-term protection of the space environment. The orbital debris engineering model (ORDEM) is used to compute the current and near-term orbital debris hazard for low Earth orbit missions. The ORDEM91 model was baselined before the STS-80 flight, the ORDEM96 model is baselined on data starting with STS-80. It provides low Earth orbit debris flux levels and directionality as a function of particle size. It is based on the latest remote and *in situ* measurements of the near-Earth environment.

Because of the importance of the manned space shuttle flights and of a future International Space Station, the United States has initiated a special pre-flight meteoroid/orbital debris risk and post-flight damage assessment programme. A BUMPER computer code can determine the probability of specified damage levels caused by debris impacts, using relevant input and output specifications. In addition to the spacecraft configuration and mission profile, a concrete meteoroid/orbital debris environment model (e.g. ORDEM96) is part of the input data. As an output, probability of particle impacts from given size, probability of the impact damage (necessity of the window replacements, reinforced carbon-carbon and radiator impacts and probability of "critical" damage) are obtained regarding both meteoroid and debris particles.

There are different thresholds of "critical" damage: For example, the windows should be replaced if impacted by a 0.04 mm particle, a space suit could be penetrated by a 0.1 mm particle, an orbital radiator tube by a 0.5 mm particle, the reinforced carbon-carbon panels (as well as payload bay) by a 1.0 mm particle, the thermal protection system by a 3-5 mm particle and the orbiter crew cabin by a 5 mm or larger particle. Comparisons of the real and predicted replacements of the shuttle windows after the last nine flights show that the real replacements are 30 percent more frequent than predicted (the total of 63 is up to STS-80). Similar results have been obtained from data on the first repair mission to Hubble Space Telescope in December 1993. In general, the use of the BUMPER assessment process has reduced meteoroid/space debris damage on the shuttle and enhanced the safety of the shuttle missions.

Another computer code, EVOLVE, simulates historical and projected space operations, including satellite fragmentations, to create mathematical descriptions of the satellite population. It combines historical data with special purpose routines to simulate semi-deterministically the evolution of the orbital debris environment to the present. Then, Monte Carlo techniques are employed for investigations of future evolutionary characteristics under various debris mitigation practices.

Developed initially in 1993 at TUBS Germany, the CHAIN model has been maintained and improved by the JSC. CHAIN is a lower fidelity model employing the so-called "particle-in-a-box" technique to permit fast running, Monte Carlo simulations of the long-term evolution of the Earth's satellite population. CHAIN can be employed to identify the relative trends associated with specific mitigation policies, while higher fidelity assessments can later be performed by the EVOLVE model.

#### C. Space Debris Mitigation Measures

Measures to limit space debris generation must be developed and implemented on a multilateral basis by the spacefaring nations. The Japan Society for Aeronautical and Space Sciences (JSASS) committee on space debris prevention design standards published in March 1996 the final report for the Japanese National Space Development Agency (NASDA) standards and design criteria. Based on this report, NASDA established the NASDA-STD-18 "Space Debris Mitigation Standard" on 28 March 1996. The NASDA Standard includes the following mitigation measures: passivation of the spacecraft and the upper stages at the end of the mission; re-orbiting the spacecraft and upper stages at the end of the mission; disposition of objects in geostationary transfer orbit in order not to pose a risk to the geostationary orbit; minimizing the debris released during normal operations; and post-mission disposal of spacecraft from low Earth orbit. A/AC.105/673 Page 20

The current NASDA Standard acknowledges that a plan for space debris mitigation control should be tailored for each programme, but requests each NASDA Project Manager to prepare a Space Debris Mitigation Plan, including an adequate rationale for items for which an exception is requested. Manufacturers are also requested to present a similar plan. Each plan is subsequently reviewed by the NASDA Safety Review Committee. An exception will be granted only under certain conditions; some projects currently well into their development cycle may be allowed to violate some requirement of the standard.

NASDA has already implemented the draining of residual propellants and helium gas from the H-I/H-II second stage. The release of mechanical devices at satellite separation and solar paddle deployment has been avoided except in some particular missions, such as the separation of spent apogee motors for the geostationary meteorological satellites. In order to prevent unintended destruction of H-II second stages in space, the command destruct system is disabled immediately after injection into orbit and its pyrotechnics are thermally insulated to prevent spontaneous initiation. The measures adopted for NASDA programmes seem to be relatively inexpensive and have been proven to be very effective. For example, the orbital life of the ETS-VI H-II second stage (1994-056B) was reduced to about seven months as a result of deorbiting. The stage re-entered the Earth's atmosphere on 31 March 1995.

Strict mitigation measures are applied to all CNES launches. The basic requirement is to leave no more than one piece of passivated debris in orbit per payload. This means the upper stage of the launcher in the case of a single launch, and the upper stage with link structure in the case of a dual launch. The separation of the payload from the last stage of the Ariane 4 launcher should not generate any other debris (pyrotechnic separation should be "clean" and remains of pyro bolts should be trapped). The normal use of the upper stage should not generate other debris; therefore solid propulsion in orbit is avoided and the end of life of the batteries and cells should not lead to explosions. To passivate the upper stage, pyrotechnic valves to empty the tanks and decrease the internal pressures are added.

To avoid overcrowding the useful orbits with "dead satellites" and reduce pollution and collision risks, CNES is developing disposal procedures at the end of a satellite's useful life. For low Earth orbits, de-orbit manoeuvres should induce a destructive reentry of the satellite into the atmosphere. For GSO, manoeuvres are required to put the satellite on a graveyard orbit, typically 300 km above GSO. Software to predict potential collisions between the operational satellites and registered space debris and other related studies are also under development.

From the German modelling studies, two mitigation measures can be identified. First, there is explosion prevention. Most of the historical unintentional explosions were due to the residual fuel of spent rocket bodies. Hence, passivation of spent rocket bodies by venting the residual fuel is appropriate to avoid self-triggered explosions. Prevention of collisions, in particular of those debris which generate most of the collisional debris, can only be performed by removing large objects from space. Spent rocket bodies and spent satellites are large objects with significant masses and areas. It can be seen from the models that substantial reduction of the population growth can be achieved this way, but there still would be a tendency toward a growing population.

In 1993, an Inter-Agency Space Debris Coordination Committee (IADC) was formally founded in order to exchange information on space debris research activities between member space agencies; to review progress of ongoing cooperative activities; to facilitate opportunities for cooperation in space debris research; and to identify debris mitigation options. The founding members were ESA, Japan, NASA and the Russian Space Agency (RSA). In 1995, China joined IADC and the British Space Agency (United Kingdom), CNES (France) and the Indian Space Research Organization (ISRO) did so in 1996. Working Group Chairs are elected to serve a term of two consecutive meetings. Each member (nation or organization) must be represented in the Steering Group and in Working Group 4 on mitigation. Representation in other Working Groups is desirable but not mandatory. Formal meetings of the full IADC are scheduled about once a year. All agreements of IADC are made by consensus.

### D. Collisions of Nuclear Power Sources with Space Debris

In the Russian Federation, the consequences of a collision between decommissioned nuclear power sources (NPS) and space debris during their protracted stay in orbit are prime targets of research on radioactive, chemical and environmental contamination of outer space. The possible consequences of a collision between debris with a reactor NPS launched into space and placed into sufficiently high orbit are: destruction of reactor radiator reflector (beryllium); destruction of radiation shield (lithium hydride); destruction of liquid metal circuit and possible outflow of coolant (sodium-potassium); and destruction of reactor NPS structural components with concomitant fragmentation of structural materials.

Interaction of space debris with secondary liquid metal circuits and the resulting circuit destruction might lead to possible coolant drops into outer space. The investigation of these processes involve the character of the NPS motion around its centre of mass; the thermal state of the radiator and the circuit; the coolant overflow due to the punctured radiator and circuit components; the thermal state of coolant drops; and the probability of interaction with the radiator and subsequent radiator puncture.

The following pattern of coolant drop egress can be assumed. Immediately after tube destruction, coolant pressure inside the tube substantially exceeds external pressure, hence the coolant reaches a boil and splashes out in small portions. Calculations confirm that the condition whereby pressure is exceeded due to centrifugal forces is pertinent only to Cosmos 1900 and 1932 satellites transferred into high orbits in 1988. Destruction of their radiators or manifolds after collision with space debris can lead to coolant outflow from the secondary circuit and formation of sodium-potassium drops (which seems to be confirmed by some space debris observations). The lifetime of coolant drops with initial diameter from 5 to 20 mm in the 950-1000 km altitude range is 7.5 to 32 years. At the 900-950 km altitude range, the corresponding lifetime is four to 14 years. The evaporation time is much longer: 145 to 580 years.

The computed probability of a collision between space debris and the coolant circuit of one of the 28 reactors in orbit is one per year for particles of 1-1.5 mm in size and  $7.10^{-3}$  to  $2.10^{-3}$  events per year for 6-12 mm size. The former particles can make holes in the tube, but the coolant would outflow only after impact of the latter ones. Depending on the construction, seven NPS (Cosmos 1670 type) can be sources of sodium-potassium drops upon impact with particles over 6 mm size and nine NPS (Cosmos 1579 type) with the size over 12 mm.

#### E. The Use of Nuclear Power Sources in Outer Space

To maintain specified thermal conditions and provide electrical power for small autonomous stations of the Mars 96 project, special radionuclide thermoelectric generators (RTG) and radionuclide heat units (RHU) based on plutonium 238 were developed. The heat units are universal (heat power about 8.5W each), so that they are used also as a primary source of heat for the thermoelectric changer of the RTGs. This simplified the safety design of both types of units, since the ampules with plutonium-238 are identical. The design and development of the units were performed in full compliance with the Principles Relevant to the Use of NPS in Outer Space, adopted by the General Assembly in its resolution 47/68 of 14 December 1992, and also with national safety standards of the Russian Federation.

Each RHU has a carbon-carbon heat shield and contains about 17 grams of plutonium-238 dioxide having activity of 260 Ci in a special capsule. The inner part of the capsule shield is made of platinum-rhodium alloys and can absorb the helium created during the alpha-type decay of plutonium-238. The external shield is made of extremely hard alloys of tantalum and wolfram with a special cover layer of other high thermal resistance materials. Therefore, each capsule has more than double shielding against thermal and mechanical shock disturbances.

The capsules could withstand an explosion and burning of the Proton space vehicle propellant with flame temperatures up to 3600 K for 4000 s; spacecraft atmospheric re-entry with the first and second space velocities (up to 11 km/s); and impact with the Earth surface (including concrete and rocks) with velocities up to 80 m/s. In addition, plutonium dioxide (cermet) tablets are not dissoluble in the fresh and sea water (to a depth up to 10 km) and base or acid environments. The leak-proof capacity of the

capsules has been confirmed by ground tests using model and full-scale RHU specimens and carried out by the inter-agency commission of experts.

The Mars 96 contained 18 RHU with total mass of plutonium dioxide not more than 300 g (270 g of plutonium-238) and the total activity of about 4700 Ci. At each of the two small scientific stations, there were 2 RTGs (each containing a single RHU) and 2 RHUs for heating. Similarly, each of the two Mars penetrators contained one RTG (powered by 2 RHU) and 3 RHU for heating purposes. The electrical power for the main spacecraft should have been provided by conventional solar battery panels.

The launching of the Mars 96 space probe with international scientific equipment on board for complex exploration of Mars took place on 16 November 1996 at 20.49 Universal Time from the Baikonur cosmodrome. The engines of the Proton launcher worked out after 583s as scheduled. After 6 minutes, a special accelerating unit engine was ignited for 100s. As a result, the unit and the Mars 96 probe were injected into a circular parking orbit around the Earth. These events were observed and controlled from the ground. After 51.5 minutes of orbital flight, near the equator and outside the visibility of the Russian ground tracking stations, the engine should have been ignited for the second time to provide an additional velocity of 3,146 m/s. After that, the Mars 96 probe should have separated from the unit and by the use of its own engine acquire an additional 536 m/s needed for entering the interplanetary orbit towards Mars.

However, while the first ignition of the accelerating unit took place as planned, the second one failed and the unit with the Mars 96 probe remained in a low Earth orbit. The automatic systems of the spacecraft performed the separation from the accelerating unit and ignition of its own engine. According to the telemetry data, it worked for about 6s and provided a velocity impulse of 10 m/s. This was not enough for a substantial increase of the orbit and moreover, the impulse was given in a wrong direction. The acceleration unit was precisely tracked in its low orbit and decayed on 18 November 1996 at 1.20 Universal Time over the Pacific Ocean, several thousand kilometres east of Australia (about 51 degrees South, 168 degrees West).

The tracking of the Mars 96 probe was not continuous and the location of its decay was much more difficult to determine. After careful analysis of all available information (telemetry, tracking and aerodynamic modelling), it was confirmed that the probe, including radioisotope capsules, entered the atmosphere on 17 November 1996 around 1.00 Universal Time at the end of its third revolution around the Earth. The probable fall-zone is located in the Pacific Ocean, 800 to 200 km around the orbit, west of the coast of Chile. Its centre is at 25.1 degrees South and 75.4 degrees West. In addition to the notification of the incident to the United Nations, representatives of Argentina, Bolivia, Chile and Peru were informed on 28 November 1996 of the circumstances of the accident. A special commission was set up to investigate all its aspects, including the reasons for the failure. The commission recommended an increase in quality control during all stages of production of the accelerating unit and cleared it for the use in future launchings of the Proton booster into highly-elliptical and geostationary orbits.

After the aerodynamic destruction of the Mars 96 spacecraft and the RTG aluminium and steel structural components during the atmospheric re-entry, the capsules with plutonium dioxide fell within the fall-zone of the fragments, in a practically unchanged form. Since there is no plutonium dioxide release into the environment, it rules out any possibility of radioactive contamination and radiological effects on the population. Deposition of the RHU in the Pacific Ocean floor at considerable depth should be regarded as an ecologically-safe disposal of a relatively small quantity of plutonium-238.

### F. International Cooperation in Space Research and Applications

The Committee on Earth Observation Satellites (CEOS) strongly pursues the development of the Integrated Global Observing Strategy (IGOS) in order to make more effective use of investments in this field and to support the world-wide demand for a complex sets of instruments to collect relevant data, distribute them and create and distribute data products. The existing systems do not seem to meet the demand. User needs could be met more effectively through better inter-agency coordination and

cooperation. Strategy should be developed to integrate inter-agency planning for cost effective space-based systems, inter-calibration, compatibility of data delivery systems and by establishing better links among the users and providers. The delivery of services should be aimed to satisfy social, economic and environmental needs of the users. Developing countries are recognized as both providers and users of data.

CEOS encourages data providers to make additional investments in calibration of measurements and validation of derived geophysical products and to extend data acquisition benefits to a broader user community. It recognizes *in situ* observations as a necessary complement of space-based observations and the need to develop data assimilation programmes to maximize the value of both types of data. A framework for private sector data providers and value-adding companies should intersect with publicly supported agencies. In general, an IGOS will demand new heights of mutual responsiveness between communities whose members measure phenomena of the Earth surface and atmosphere, and communities whose members make use of this information.

The development of IGOS should be gradual to accommodate a variety of data policies and voluntary commitments, but at the same time it should contain some measurable benchmarks for gauging the progress of implementation. The structure of IGOS should satisfy a formal set of users' data requirements for continuity of data provision (coverage and characteristics); minimization of data gaps; maintenance of the long-term data record; reduction of unnecessary duplication of instruments; development of partnerships between data users and data providers for definition and complementary funding of observing programmes; and a high level of political support. The Task Force on Planning and Analysis, established in 1994, has already collected user requirements and defined a database structure to conform with data availability. The CEOS meetings provide a key forum to address the space component; an IGOS Strategic Implementation Team was established at CEOS's 10th plenary meeting in November 1996 in Canberra (Australia). The work of the Task Force will be continued and expanded by an Analysis Group. An international peer review of pilot projects should begin in 1999 and an operational system, based on the lessons learned, would be established after that.

During a meeting at the Vienna International Centre in February 1997, the representatives of Bulgaria, Greece, Poland, Romania, Slovakia and Turkey agreed to establish a network of space science and technology education and research institutions for central eastern and south-eastern European countries. The activities of the network would be in the harmony with the relevant work of existing institutions in Europe and would be open to international cooperation. The objective of the network will be to promote, by space specific multidisciplinary and interdisciplinary methods, higher level capacity building in the region; develop future specific regional space education, research and applications projects; and develop joint space scientific and operational programmes and benefit from them at the regional level. A study on the technical requirements, design and operation mechanism and funding of the network will be prepared by the experts in cooperation with the United Nations Office for Outer Space Affairs.

Satellite communications, which makes it possible to collect, transmit, disseminate and exchange information among all the regions of the world, could be of particular use to developing countries, especially in the rural areas, which tend to be isolated and lack communications infrastructures. Satellite communications increase domestic, regional and national traffic and have a substantial impact on national economies. A number of projects are currently being implemented in Europe and Africa for information exchange using satellites, and the installations involved could be used for the Mediterranean region, such as:

- COPINE, proposed by the United Nations Office for Outer Space Affairs and the World Health Organization, which aims to establish a network of satellite telecommunications stations for information exchange on the environment, education and medicine between Africa and Europe;
- MEDSAT, a project directed by France, involving the launch of a communications satellite to cover the Mediterranean basin (Morocco, Tunisia and Egypt are potential southern partners);

- EAST, another project announced by France, involving the launch of a powerful geostationary satellite over central and eastern Europe and North Africa to provide telephone and data transmission services;
- COSMO/SKYMED, a project directed by Italy, involving a constellation of small satellites to observe the Mediterranean basin; and
- FUEGO, a project directed by Spain, involving a constellation of small satellites for the management and monitoring of forest fires in the Mediterranean basin.

With the establishment of the Royal Centre for Remote Sensing (CRTS) in 1989, Morocco took an important step forward in space information production. The Centre is responsible, among its different space-related tasks, for distributing satellite images and centralizing the national records of satellite data and data from projects using spaceborne remote detection and geographic information systems. A number of projects using these techniques are currently in progress or being set up in Morocco in response to needs in the areas of natural resource inventory and management, environmental protection and land development. The aim of the projects is to generate the information needed for development.

There are currently stations for receiving Earth observation data from the METEOSAT meterological satellite, mainly in the National Department of Meteorology (DMN). A NOAA meteorological satellite data receiving station has also been set up in the DMN for meteorological studies. Another station of this type is planned for CRTS to receive satellite radiometric data, which is useful for agriculture, forestry and oceanography. Management of scarce water resources in Morocco is extremely important. In order to access data from other Earth observation satellites, the CRTS has concluded contracts with international image distributors: SPOT IMAGE in France for Spot data, EURIMAGE in Italy for NOAA, Landsat, ERS data *etc*.

The CRTS is also organizing development of the first national microsatellite, experimental in nature, which will be launched into low Earth orbit, with a payload of messaging and remote sensing equipment. The work is being carried out with the collaboration of the Berlin Technical University (TUB), which is providing the TUBSAT-C platform for the project. Installation of the component systems is expected to be completed in 1997.

### G. Space Medicine and Materials Science

Chagas' disease, also called American trypanosomiasis, is an infection caused by a parasite, the flagellate protozoan Trypanosoma cruzi, transmitted to humans most often by an insect carrier (particularly by a bloodsucking bug called "vinchuca" in Chile), but also transmitted by some other indirect ways (i.e. through blood transfusions and organ transplants or through the handling or ingestion of the blood and meat of infected animals). The disease is endemic in most rural areas of Central and South America, and causes local swellings, fever and prostration. When the disease enters a chronic stage, it can affect the heart, and may end in death, especially in children. To date, no known drug cures the T. cruzi infection at this chronic stage. According to the World Health Organization (WHO), 20 million people are infected in a territory that spans from the Southern United States to the end of the Patagonia. Every year, 80,000 people die, and 250,000 are infected.

The outstanding advancements in the crystallization of proteins in microgravity achieved during the last few years has opened a light of hope towards the development of medical drugs to eventually cure Chagas' disease. Since 1984, a number of NASA Space Shuttle missions have carried out crystallization experiments and have developed the necessary hardware. As a result, crystals of numerous proteins have been grown in space, having a higher quality and a bigger size than those grown on the ground, subject to Earth's gravity. One of the biggest advances concerning crystal growth in the microgravity environment in space has been the introduction of a new method, called "vapour diffusion using hanging drop". This method has allowed for the crystallization of innumerable macro-molecules in space, particularly of proteins.

The bigger size and the higher quality of space-grown crystals make them particularly appropriate for the study of their three-dimensional structure by means of high-resolution analysis with X-rays diffraction. This technique, "computer molecular modelling," is performed with the help of modern computer software. The knowledge of the three-dimensional structure of protein molecules is essential in order to determine their mechanisms of action and their biological functions, and subsequently to develop new drugs able to interact with these bio-molecules in a specific, desired way. This process is known as "rational design of drugs".

In February 1996, during the STS-75 mission of the Space Shuttle Columbia, the first medical experiment designed by Latin American researchers was carried out. For 16 days, crystals were grown of Tripanotion Reductase, a specific enzyme of the T. cruzi. Based on the results, new experiments were prepared for the STS-83 mission in April 1997. The aim was to grow, in a microgravity environment, crystals of the parasite's other enzymes (11 different proteins in 80 crystallization chambers), in order to determine their molecular structures. Participating scientists from Argentina, Brazil, Chile, Costa Rica, Mexico, Uruguay and the United States hope that using the rational design of drugs will result in the development of a new medicament against this silent but fatal disease.

#### H. Astronomy and Planetary Exploration

The Japanese ISAS successfully launched the Very Long Base Interferometry (VLBI) satellite MUSES-B (renamed in orbit as HALCA - Highly Advanced Laboratory for Communications and Astronomy) by the new M-V launch vehicle on 12 February 1997. The M-V is a solid, three-stage rocket with an optional kick stage. It is about 30 metres long, with a diameter of 2.5 metres, and total mass about 140 tons. It can carry an approximate two-ton payload into low Earth orbit. With the advent of this new launcher, Japanese space science entered a new area, namely a stage which foresees more ambitious projects that include lunar and planetary exploration. Five more spacecraft have already been approved for launch by the M-V: the LUNAR-A for the Moon penetrator mission (fiscal year 1997); the PLANET-B to Mars (fiscal year 1998); the ASTRO-E for an X-ray astronomy satellite (fiscal year 1999); MUSES-C for asteroid sample returns (fiscal year 2001); and ASTRO-F for infrared astronomy (fiscal year 2002).

Despite a large amount of data collected by the Apollo and Luna missions, the structure and composition of the lunar interior is still poorly understood. The planned LUNAR-A mission will send three penetrators from the lunar orbit onto its surface. The penetrators, each having a cylindrical shape with a frustum nose of 80 cm long and 12 cm in diameter, will hit the surface at a velocity of about 300 m/s and penetrate two metres deep (two will be aimed to the near side of the Moon, a third to the far side). The penetrators will constitute a seismic and heat flow measurement network in order to better understand the origin and evolution of the Moon.

The PLANET-B is the first Japanese mission to Mars and is due for launch in July 1998. After an interplanetary cruise, it should enter the orbit around Mars with periapsis as low as 150 km. This is where the interaction of the solar wind with the Martian atmosphere could be most effectively studied. The onboard camera and radiometer will provide information on the global atmospheric conditions near the surface. Other instruments should provide data on magnetic fields, the vertical structure of the atmosphere and plasma, high energy particles, surface temperature, and images of the surface and dust storms. The spacecraft should operate in areocentric orbit for at least two years after insertion in 1999.

The ambitious first launch of the M-V in the 21st century will carry an asteroid sample return mission, MUSES-C, to the near-Earth asteroid Nereus. The mission should be launched early in 2001 and will arrive back on Earth in January 2006. Since Nereus seems to be one of the most primitive bodies in the solar system, the mission should provide a better picture of the early history of the solar system. The astronomical mission ASTRO-E (a successor to the Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite launched in 1993) will be equipped with soft and hard X-ray telescopes to cover a very wide energy range. The ASTRO-F infrared astronomy satellite should explore the riddles of galactic evolution, interstellar objects, brown dwarfs, dark matter in the Universe and other topics, using a complex of instruments, cooled by a new mechanical cooling technique which has rapidly

progressed in the past decade as an auxiliary cooler. This should substantially prolong the mission lifetime in comparison with previous infrared astronomy satellites.

The first ESA mission for the *in-situ* study of a cometary nucleus environment and its evolution in the inner solar system is called Rosetta. The main Orbiter spacecraft is developed, operated and fully funded by ESA, with the exception of the scientific payload, which is under the responsibility of the Principal Investigators. To enhance the scientific capabilities of the mission, the Orbiter will carry one Lander called the Surface Science Package. The Rosetta project is ready to enter Phase B with system and subsystem design and analysis to be completed in the third quarter of 1998. The spacecraft is scheduled to be launched in January 2003 by an Ariane 5 launcher. It will employ three planetary gravity assist manoeuvres (Mars in August 2005 and Earth in November 2005 and November 2007) to acquire sufficient energy to rendezvous with the comet Wirtanen in May 2012. After each Earth assist, an asteroid fly-by is planned (asteroid Mimistrobell in September 2006 and Shipka in October 2008).

The comet rendezvous manoeuvre is currently scheduled to occur approximately 4.8 astronomical units (AU) from the Sun and is aimed to match the spacecraft orbit with the comet so that the relative velocity is reduced to about 100 m/s. The rendezvous will be followed by a drift phase of three to six months as the spacecraft slowly closes on the comet. After that, there should be enough power from the solar array to bring the spacecraft to full operational status and acquire the comet with the on-board navigation camera. The final manoeuvre would then be completed and the spacecraft placed in a mapping orbit. The nominal operations on the comet are expected to commence approximately 3.25 AU from the Sun through to perihelion, a period of about one year. Early in the operational phase, the landing sites for the Lander will be selected and its separation and delivery accomplished. The Lander will nominally operate on the surface of the nucleus for several months, while the Orbiter will orbit or escort the nucleus to carry out scientific operations with its payload.

The scientific objective of the Rosetta mission is to investigate the origin of the solar system by studying the origin of comets and to study the relationship between cometary and interstellar material. It will provide for the detailed exploration of the comet nucleus and its close environment and will provide unique sample analysis capabilities, thus satisfying to a large extent the objectives of the original comet-nucleus sample-return mission.

The scientific payload of the Rosetta Orbiter was pre-selected and endorsed by the ESA Science Programme Committee at its February 1996 meeting. The Orbiter payload comprises 11 investigations and one radio science investigation using the on-board spacecraft telecommunications system. They comprise remote sensing (four experiments), composition analysis (four), nucleus large-scale structure (one), dust flux, dust mass distribution (one), and comet plasma environment and solar wind direction (one). The Lander payload consists of a complex of investigations which will characterize the comet surface and subsurface (a total of nine experiments).

Austria is responsible for the MIDAS (Micro-Imaging Dust Analysis System) experiment on the Rosetta Orbiter (in cooperation with co-investigators from six countries). MIDAS is dedicated to the micro textual and statistical analysis of cometary dust particles. It is based on the technique of atomic force microscopy which has made rapid progress in recent years after the discovery of the principle in 1986. Textural and other analysis of dust particles will be performed in the size range of 4 to 5000 nanometres. The MIDAS instrument is considered essential for the Rosetta mission as, for the first time, it will provide the capability of imaging in three dimensions dust particles in the nanometre to micrometre range. This size range covers the building blocks of pristine interplanetary and cometary particles, i.e. the silicate core particles (100-200 nanometres), refractory organic mantle (about 10 nanometres) and possible crystalline structure of the material. The instrument will collect and image particles irrespective of their shape and electrical conductivity. It should perfectly complement the data on the chemical composition obtained by other instruments such as the Cometary Secondary Ion Mass Spectrometer (COSIMA).

### I. Adverse Environmental Effects on Astronomy

It has become clear that operational and spent spacecraft, as well as the larger pieces of trackable space debris, are the greatest contributors to "trailing": a passage of an object across a telescopic field of view, which is recorded both photographically (during the deep space studies) and photometrically. The quality of deep space plates is degraded, photometric observations are lost and there is an ever present danger of damage to sensitive detectors. The phenomenon is not new, but with the launch of multi-satellite systems such as Iridium now and, perhaps, Teledesic in the future, there is likely to be a considerable growth in the population of both active and spent satellites. Also, the issue of radio interference produced by Iridium satellites at 1612 MHz with astronomical OH maser emission remains unresolved, despite the very considerable efforts of the Inter-Union Committee on the Allocation of Frequencies to obtain a resolution through the International Telecommunication Union (ITU).

In June 1996, the United States Naval Research Laboratory launched the TIPS experimental double satellite, the two components of which are connected by a four kilometre-long tether. The announced objective is to test survivability of the 2.5 mm diameter tether in orbit at 1000 km altitude, because tethers are believed to be fragile in respect of small debris impact. A tether 4 kilometres long subtends an angle of 14 minutes of arc and has the 6th magnitude - just visible to the naked eye. With these dimensions, TIPS can produce a smear rather than a trail - a smear which is comparable in size to the field of view of a CCD commercially available for professional and amateur use. Since some astronomical observations should be performed during astronomical twilight, TIPS is a hazard for observational optical astronomy. For example, observations at the beginning of April of the appulse of an early type star and the comet Hale-Bopp with the Keck Telescope had to be planned so as to not coincide with the passage of the TIPS satellite.

It was announced last year, that UNESCO was moving away from the concept of the "Star of Tolerance" to mark its first fifty years of existence. It was supposed to be a system of two reflecting balloons, kept together by a two kilometre long tether in an orbit at 1250 km altitude. Although, like TIPS, it will be seen largely in twilight, it has a potential to appear in the dark sky and to be as bright as Sirius. Unfortunately, the project might be back, this time as a Millennial Project. The putative launch of this project would send a disastrous message: that advertising from space is considered acceptable. The firm stand taken by ESA against this project was very warmly appreciated by the whole astronomical community.

#### Appendix

#### LIST OF SCIENTIFIC AND TECHNICAL PRESENTATIONS

### I. SYMPOSIUM ON SPACE SYSTEMS FOR DIRECT BROADCASTING AND GLOBAL INFORMATION SYSTEMS FOR SPACE RESEARCH, ORGANIZED BY COSPAR AND IAF

The first session of the symposium, "Direct broadcasting systems", was co-chaired by Mr. K. Doetsch, representing IAF, and Mr. G. Haerendel, representing COSPAR. The second session of the symposium, "Global information systems for space research, was co-chaired by Mr. K. Doetsch, representing IAF, and Mr. K. Kasturirangan, representing COSPAR.

"Global Perspectives of Satellite Radio and Digital Audio Broadcasting," Mr. K. Kasturirangan Indian Space Research Organisation (ISRO), India.

"Multimedia and Broadcasting Services via Satellite," Mr. O. Koudelka, Technical University Graz, Austria.

"Current Status of Satellite Direct Television Broadcasting in Russia", Mr. Y. B. Zoubarev, State Radio Research and Development Institute, Russian Federation.

"Satellite Digital Television Broadcasting Technology and the Koreasat DBS System," Mr. J. S. Chae, Electronic Communications Research Institute, Republic of Korea.

"International Networks and Satellite Data Archiving Systems in Support of Mission to Planet Earth," Mr. R. Schiffer, National Aeronautics and Space Administration (NASA), United States.

"Software Packages Including the Use of World Wide Web (WWW) for Research Purposes in Space Science," Mr. M. Machado, Commissión Nacional de Actividades Espaciales, Argentina.

"Data and Information System on Global Climate Change (IGBP-DIS)," Mr. J.-P. Malingreau, Joint Research Centre of the European Commission.

"The Role of Developing Countries in Global Change and Establishment of a Global Information System," Mr. Zhou Chenghu, Chinese Academy of Sciences, China.

# II. OTHER SCIENTIFIC AND TECHNICAL PRESENTATIONS

"Scientific and Technical Aspects of the STS 78 Mission" (video presentation), Mr. J.-J. Favier, spationaute, Centre National d'Etudes Spatiales (CNES), France.

"Software Packages Including the use of World Wide Web for Research Purposes in Space Science," Mr. R. Albrecht, European Space Agency.

"Space Activities of Developing Countries: Technical Possibilities and Perspectives," Mr. M. M. Kabbaj, Royal Centre for Remote Sensing (CRTS), Morocco.

"Space Debris Research in France in 1996," Mr. F. Alby, Centre National d'Etudes Spatiales (CNES), France.

"Integrated Global Observation Strategy," Mr. G. Brachet, Centre National d'Etudes Spatiales (CNES), France.

"Research on Developing Medicaments for Chagas' Disease through Protein Crystallization in Microgravity Conditions," Ms. S. Sepulveda, Universidad de Santiago de Chile, Chile.

"Network of Space Science and Technology Capability Building Centres in Central Eastern and South Eastern Europe," Mr. M.-I. Piso, Romanian Space Agency, Romania.

"Mars 96 Mission," Mr. V. I. Lisitsin, Russian Space Agency, Russian Federation.

"Japanese Space Science in 1997," Mr. Y. Matogawa, Institute of Space and Astronautical Science (ISAS), Japan.

"Austrian Contribution to the Cometary Probe Rosetta," Mr. K. Torkar, Austrian Academy of Sciences, Austria.

"Some Topics of Space Debris Research in Japan," Mr. S. Toda, National Aerospace Laboratory, Japan.

"German Space Debris Modelling Activities," Mr. J. Bendisch, Technical University Braunschweig, Germany.

"Orbital Debris Modelling in the United States of America," Mr. N. Johnson, National Aeronautics and Space Administration (NASA), United States.

"Inter-Agency Space Debris Coordination Committee (IADC)," Mr. G. M. Levin and Walter Flury, on behalf of IADC.

"NASDA Space Debris Mitigation Standard," Mr. A. Kato, National Space Development Agency (NASDA), Japan.

"Space Shuttle Program Pre-Flight Meteoroid/Orbital Debris Risk and Post-Flight Damage Assessments," Mr. G. Levin, National Aeronautics and Space Administration (NASA), United States.

"Modelling the Orbital Debris Population," Mr. R. Crowther, Defence Evaluation Research Agency (DERA), United Kingdom.

"Modelling of the Space Debris Environment and Risk Assessment," Mr. W. Flury, European Space Agency.

"Collision of Nuclear Power Sources with Space Debris." Mr. V.S. Nikolaev, Ministry of Atomic Energy, Russian Federation.

"Nuclear Power Sources on Board of Mars 96 Spacecraft," Mr. A. Pustovalov, Russian Academy of Sciences, Russian Federation.

"Management of Water Resources in Developing Countries," Mr. D. El Hadani, Royal Centre for Remote Sensing (CRTS), Morocco.

"Adverse Environmental Impacts on Astronomy," Mr. D. McNally, International Astronomical Union.