和平利用外层空间委员会

联合国/欧洲航天局/空间研究委员会
数据分析技术讲习班报告

由巴西国家空间研究所代表巴西政府主办

(1997年11月10日至14日，巴西，圣若泽多斯坎波斯)

目录

导言 .. 1 - 11 4
A. 背景和目标 ... 1 - 6 4
B. 讲习班的组织和日程安排 ... 7 - 11 4
图像处理和数据分析软件系统 ... 12 - 33 5
A. 空间科学和技术教育中心 ... 12 - 16 5
B. 科技中心的数据管理部门 ... 17 6
C. 计算机软件系统和语言 ... 18 6
D. 交互式数据语言(IDL) ... 19 - 20 6
E. 地理信息系统和遥感图像处理系统 .. 21 - 24 7
F. 天文数据分析和图像处理系统 ... 25 - 33 8
技术用语和缩略语解释一览表

<table>
<thead>
<tr>
<th>术语</th>
<th>解释</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>二维</td>
</tr>
<tr>
<td>3D</td>
<td>三维</td>
</tr>
<tr>
<td>AIX</td>
<td>先进的交互执行程序(UNIX操作系统的一种执行工具)</td>
</tr>
<tr>
<td>AGL</td>
<td>星网图形库</td>
</tr>
<tr>
<td>ARC</td>
<td>自动比率控制</td>
</tr>
<tr>
<td>ASCII</td>
<td>美国信息交换用标准代码</td>
</tr>
<tr>
<td>BMP</td>
<td>图形格式</td>
</tr>
<tr>
<td>C</td>
<td>高级编程语言</td>
</tr>
<tr>
<td>CASE</td>
<td>计算机辅助软件工程工具</td>
</tr>
<tr>
<td>CDF</td>
<td>逗点分隔格式(文件名延伸/文件类型)</td>
</tr>
<tr>
<td>DEC</td>
<td>数码设备公司</td>
</tr>
<tr>
<td>DCF</td>
<td>二维图形文件格式</td>
</tr>
<tr>
<td>FFT</td>
<td>快速傅里叶变换</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>公式翻译程序(编程语言)</td>
</tr>
<tr>
<td>Free BSD</td>
<td>伯克利软件自由传播(UNIX)</td>
</tr>
<tr>
<td>GIF</td>
<td>图表交换格式</td>
</tr>
<tr>
<td>GIS</td>
<td>地理信息系统</td>
</tr>
<tr>
<td>GNU</td>
<td>“GNU's Not UNIX” (自由软件基金会的操作系统)</td>
</tr>
<tr>
<td>HDF</td>
<td>层次数据格式</td>
</tr>
<tr>
<td>HP-UX</td>
<td>Hewlett-Packard操作系统</td>
</tr>
<tr>
<td>IDI</td>
<td>图像显示接口</td>
</tr>
<tr>
<td>IDL</td>
<td>交互式数据语言</td>
</tr>
<tr>
<td>I/O</td>
<td>输入输出</td>
</tr>
<tr>
<td>IRIX</td>
<td>硅图工作站使用的主要操作系统</td>
</tr>
<tr>
<td>JPEG</td>
<td>压缩图形文件格式(联合摄影专家组)</td>
</tr>
<tr>
<td>Linux</td>
<td>UNIX操作系统的一种执行工具</td>
</tr>
<tr>
<td>MCL</td>
<td>MIDAS 公共语言</td>
</tr>
<tr>
<td>MIDAS</td>
<td>莫尼黑图像数据分析系统</td>
</tr>
<tr>
<td>NetCDF</td>
<td>网络公用数据格式</td>
</tr>
<tr>
<td>OS-routines</td>
<td>操作系统例行程序</td>
</tr>
<tr>
<td>RAW</td>
<td>使程序从/向输入输出设备直接传送信息而不必经过操作系统处理、提取或解释的方式</td>
</tr>
<tr>
<td>Solaris</td>
<td>以 Sun-UNIX为基础的用户环境，包括 UNIX操作系统和一套 XII视窗系统</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Solaris x 86</td>
<td>Solaris 的个人电脑执行工具</td>
</tr>
<tr>
<td>SPRING</td>
<td>地理信息处理系统(遥感图像处理系统)</td>
</tr>
<tr>
<td>TIFF</td>
<td>标记图像文件格式</td>
</tr>
<tr>
<td>UNIX</td>
<td>美国电话电报公司贝尔实验室的操作系统</td>
</tr>
<tr>
<td>VAX</td>
<td>虚拟地址扩充</td>
</tr>
<tr>
<td>VMS</td>
<td>虚存系统(VAX 电脑上的操作系统)</td>
</tr>
<tr>
<td>Widget</td>
<td>视窗工具(图形符号与程序编码的结合，以用户图形接口(GUI)完成某一特定的功能)</td>
</tr>
<tr>
<td>WYSIWYG</td>
<td>“所见即所得”</td>
</tr>
</tbody>
</table>
导言

A. 背景和目标

1. 根据第二次联合国探索及和平利用外层空间会议（82年外空会议）的建议，联合国大会第37/90号决议决定联合国空间应用方案除其他事项外，应促进发达国家与发展中国家间以及发展中国家间在空间科学技术领域的更广泛合作。

2. 和平利用外层空间委员会第三十九届会议注意到科学和技术小组委员会第三十三次会议建议的联合国空间应用方案1997年的活动。随后，联合国大会1996年12月13日第51/123号决议也规定了空间应用方案1997年的活动。

3. 为响应联合国大会第51/123号决议并根据第二次联合国探索及和平利用外层空间会议的建议，在空间应用方案1997年活动的范围内举办了联合国/欧洲航天局/空间研究委员会数据分析技术讲习班，尤其为发展中国家的利益服务。

4. 讲习班是由联合国秘书处外层空间事务厅、欧洲航天局（欧空局）、国际科学联合委员会（科学理事会）的空间研究委员会和巴西国家空间研究所联合举办的。

5. 讲习班的目标是为与地球观测卫星数据接收、分析和判读有关的教育工作者和科学家提供一个论坛。这一论坛将可促进开发人员与用户之间的联系，提供范围广泛的软件包制作和使用知识，以便在遥感、卫星气象学和天文学领域进行数据管理。讲习班的另一个目标是向参加者提供由数字数据采集系统采集供各种侧重点教育、科学和政策方面应用的数据接收、分析和判读工具的专家知识。

6. 讲习班期间介绍了各种基础和高等原理和技术，并辅之以日常数据接收、分析和判读操作的实例。专题报告和讨论的重点是通过实际练习增强对有关概念的理解，与会者提出了自己实践经验中遇到的问题供讨论。

B. 讲习班的组织和日程安排

8. 来自阿根廷、奥地利、巴西、比利时、中国、厄瓜多尔、法国、德国、印度、印度尼西亚、黎巴嫩、尼日利亚、巴拉圭、斯洛伐克、斯里兰卡、阿拉伯叙利亚共和国、泰国、美利坚合众国和乌拉圭以及巴基斯坦的50名空间科学家出席了讲习班。联合国和欧空局提供了财政支持，支付了发展中国家的17名与会者的机票和生活费用。巴西国家空间研究所提供了会议设施、设备和当地交通。

9. 讲习班的日程是由外层空间事务厅、巴西国家空间研究所和空间研究委员会联合制定的。讲习班的活动包括下列方面的专题报告：
(a) 数据分析技术基本概念综述；
(b) 时间和频率范围；
(c) 时间关系曲线和时间序列分析；
(d) 基本曲线拟合；
(e) 屈服点确定；
(f) 振荡信号分析；
(g) 频域运算；
(h) 数据过滤；
(i) 信号积分和微分；
(j) 瞬态数据分析；
(k) 连续数据分析；
(l) 数据平均；
(m) 数据压缩；
(n) 神经网络和图象处理中的模糊逻辑；
(o) 处理信号的神经网络；
(p) 子波；
(q) 多维信号处理；
(r) 图象处理和数据分析应用于所有领域，包括遥感、卫星气象学和天文学。

10. 致开幕词的有巴西国家空间研究所、联合国外层空间事务厅和欧空局的代表。

11. 本报告由和平利用外层空间委员会及其科学和技术小组委员会编写，介绍了讲习班的背景、目标和组织安排，并概述了讲习班上发表的一些专题报告。与会者向其本国政府有关当局、大学、天文台和研究机构汇报了在讲习班上获得的知识和开展的工作。

图像处理和数据分析软件系统

A. 空间科学和技术教育中心

12. 发展中国家成功应用空间科学技术的一个先决条件是开发各区域当地各种基本能力，特别是人力资源。鉴于这一事实，大会第45/72号决议核准了经由和平利用外层空间委员会核准的科学和技术小组委员会全体工作组的建议（A/AC.105/456，附件二，第4(u)段）：“联合国应在其专门机构和他国际组织支持下，带领国际努力，在发展中国家现有的国家/区域教育机构内建立区域外空科技教育中心”。

13. 外层空间事务厅已通过联合国空间应用方案将大会核准的上述建议化为在发展中国家建立（联合国附属）区域空间科技教育中心的行动。这些中心背后的构想是以如下基本观念为基础的，即发展中国家应拥有在空间科技应用方面训练有素的本国人员，特别是在那些与本国发展方案有关的应用方面，例如遥感、卫星气象学和应用地理信息
系统、空间通信和基础空间科学，这一点至关重要。只有到那时，发展中国家才能够有效地促进解决全球、区域和国家环境和资源管理问题。

14. (联合国附属)亚洲和太平洋空间科技教育中心已于 1995 年 11 月在印度成立。该中心的地址设在台拉登印度遥感研究所内，该中心利用印度遥感研究所的基础设施举办遥感和地理信息系统培训班；设在艾哈迈达巴德的空间应用中心负责举办卫星通信和卫星气象学培训班；设在艾哈迈达巴德的物理研究所则负责举办空间科学培训班。

15. 巴西和墨西哥被选作(联合国附属)拉丁美洲和加勒比区域空间科技教育中心的东道国。关于建立中心的协定已于 1997 年 3 月由巴西和墨西哥签署，现正向拉丁美洲和加勒比的所有成员国分发协定文本以争取它们的赞同。

16. 关于在西亚建立这类中心的计划以及分别在摩洛哥和尼日利亚为非洲法语地区和英语地区各建立一个这类中心的计划正在接近完成。

B. 科技中心的管理部门

17. 各中心首期方案的重点将是遥感和地理信息系统、气象卫星应用、卫星通信和基础空间科学，各中心还将设立一个数据管理部门与有关的全球数据库联接起来，以满足各中心的数据需要。数据管理部门的职能将包括数据收集、关键项登录、程序编制、计算操作和数据文档、程序及硬件的维护。因此，讲习班的活动着重于数据分析技术作为计算机软件系统和语言的一部分。

C. 计算机软件系统和语言

18. 从七十年代直到八十年代中期，科学计算范围已大大扩大。现有的技术已从单独的校园计算机发展到随处可见的微型计算机(工作站)和个人电脑。但是，缺少的是一种通用语言环境，即可以用现有的任何计算机语言进行科学编程的的语言环境。从那时起，一些编程语言已开始控制这一领域。越来越多的科学家从少到多开始使用交互式数据语言(IDL)。Mathematica 以及类似的集成总体环境。另外，诸如 FORTRAN(公式翻译程序语言)等编程语言在设计上已逐步升级，可以生成在拥有多个处理器的计算机上进行并行处理的编码。集成总体环境由内部更加高级的编程语言构成。最终，IDL、Mathematica 和 FORTRAN 90(在 Numerical Recipes 的辅助下)已成为同类的高级编程语言。

D. 交互式数据语言

19. IDL 是数据交互式分析和直观化的一种完整的计算环境。它将强大的阵列处理语言与各种数学分析和图形显示技术集为一体。通过使用 IDL，利用 FORTRAN 或 C 语言编制程序，传统语言需要几天或几周编制程序的任务可在几小时内完成。用户可使
用 IDL 指令进行交互式数据测试，然后通过编写 IDL 程序创建完整的应用。

20. IDL 有下列优点：
 (a) 它是一种完整的结构式语言，可同时用于交互式测试和创造复杂的功能、程序和应用；
 (b) 对于整个阵列进行操作运算（不必循环执行指令），简化交互式分析和缩短编程时间；
 (c) 立即编成和执行 IDL 指令可获得即时反馈和实际交互作用；
 (d) 迅速的二维绘图、多维绘图、体积度直观化、图像显示和动画制作可立即观察计算结果；
 (e) 提供多种数字和统计分析常规，包括 Numerical Recipes(数值配方)常规，用于数据的分析和模拟；
 (f) IDL 灵活的输入输出设施可读取任何类型的特定数据格式，还可支持常用的图像标准(包括 BMP、GIF、JPEG)和科学数据格式(CDF、HDF 和 NetCDF)；
 (g) IDL 视窗工具可用于迅速建立适用于 IDL 程序的多平台图形用户接口；
 (h) IDL 程序在所有支持平台(UNIX、VMS、Microsoft Windows 和 Macintosh 系统)上同样运行，无需或只需稍加修改。应用上的简便可方便地支持各种计算机；
 (i) 现有的 FORTRAN 和 C 例行程序可有机地与 IDL 相并联，从而增加特殊功能。或者，C 和 FORTRAN 程序可调用 IDL 例行程序作为一个子程序库或显示。

E. 地理信息系统和遥感图像处理系统

21. 地理信息处理系统(SPRING)是一种现代化的地理信息系统和遥感图像处理系统，具有针对目标的数据模型，可在同一个统一的环境下把栅格和矢量数据表示法结合为一体。SPRING 是由巴西国家空间研究所在巴西农业研究机构、IBM 巴西分公司、亚马孙河观测系统协调委员会和国家研究与发展机构的协助下开发出来的。SPRING 系统目前正用于巴西的一些重要项目，其中包括亚马孙河流域雨林毁坏状况多时评估；巴西的生态经济区划分和国家土壤数据库。

22. SPRING 系统支持的一些传统数据处理技术包括：
 (a) 图像处理：重合、嵌拼、增强、滤波、IHS 主要组件转换、算术运算、最大似然像素分类器；
 (b) 数字式地形建模：网格生成、等高线标绘、斜度/方位图、三维直观；
 (c) 专题图和地籍图：数字化、编辑、地志生成、栅格/矢量相互转换、嵌拼；
 (d) 数据库查询和空间表示法；
 (e) 支持 14 种投影制图法；
 (f) ARC/INFO、DXF、ASCII、RAW 和 TIFF 格式的输出输入；
 (g) “所见即所得”方式制图(附带符号库)。

23. SPRING 系统带来的一些新特点和技术如下：
(a) 菜单驱动式界面，为各类地理数据提供一种统一的环境；
(b) 分段技术和区域划分(非监控式和监控式)；
(c) LANDSAT 和 SPOT 卫星图像复原；
(d) 遥感图像混合模型；
(e) 马尔可夫式后分类技术；
(f) 雷达图像处理；
(g) (天线阵)三角栅格生成，附带限制条件；
(h) 针对目标的地理分析语言。

24. 为了向日益增多的用户广泛普及遥感和地理信息系统技术，SPRING 系统已作为免费软件提供(http://sputnik.dpi.inpe.br/spring)。SPRING 系统目前支持下列 UNIX 环境：AIX 3.2.5, HP-UX 9.0, IRIX 4.0, Linux 2.0, Solaris 2.5 和 Solarisx86 2.5。巴西国家空间研究所正在努力在因特网上提供 SPRING 系统的全英文源码版，并在研制适用于 Free BSD、视窗 95 和视窗网络平台的版本。

F. 天文数据处理和图像处理系统

26. 1980 年末提出的 MIDAS 系统最初的设计建议，在软件接口定义方面采用了大不列颠及北爱尔兰联合王国的 STARLINK 项目的设想。自 1984 年开始提供的目前版本，在其应用程序的接口上也采用了类似原理，但扩展为拥有更加广泛基础的新的标准接口。

27. MIDAS 系统的最初设计是在七十年代初在 DEC/VMS 系统上进行的。但是在八十年代后期，随着科学界接受 UNIX 为标准操作系统以及工作站的出现，对 MIDAS 系统作了大量的重新设计，现可在广泛的各种计算机上运行，以 DEC/VMS 或 UNIX 各种应用方式之一作为操作系统。

1. MIDAS 系统的设计

28. MIDAS 系统的设计考虑到了一系列基本需要以确保系统可逐渐形成，这些基本需要是:

(a) 单元组合式设计，从而便于调整适应不同的环境；
(b) 可移植，以确保 MIDAS 系统可在不同的计算机上运行；
(c) 采用标准，如 FORTRAN 和 C 程序设计语言，以及 X 视窗系统。采用标准的程序设计语言便于运用计算机辅助软件工程工具，并可更加方便地转为针对目标的编
(d) 便于程序设计，提供简单的接口例行程序存取数据，并采用一种灵活的控制语言；
(e) 开放式设计，从而便于添加其他研究所提供的软件。

2. 基本配置和特性

29. 设计的基本系统是在附带适当外围设备的单独一台计算机上运行的，包括下列三个部分：监视器、应用设备和接口。MIDAS 系统监视器包括用户接口，并以及管理任务和局部变量的例行程序。MIDAS 系统由指令驱动。所有用户的交互作用和命令执行程序的调度安排均通过监视器完成。监视器具有如下功能：
 (a) 显示不同详细程度的在线帮助；
 (b) 记录对话过程中的所有操作；
 (c) 充当命令的解释工具；
 (d) 对输入串进行再处理，以翻译用户定义的符号和便利命令编号和缓冲等等；
 (e) 执行次级处理过程的应用程序。

30. MIDAS 是一套多处理系统。在 MIDAS 系统中，应用程序对数据进行实际操作，可写成标准的 FORTRAN77、C 或 MIDAS 控制语言。所有通信都必须经过监视器，并且通过关键词和区间描述符完成。MIDAS 系统的应用功能重要性分为几等，最高等的是首要或核心应用，没有这些应用几乎不可能进行图像处理。核心应用负责下列功能：
 (a) 图像显示，由成熟的图像处理系统全部应有的通常功能构成，例如以全屏幕或区段屏幕显示和检索数据，缓存和卷动获取光标值，修改查看表，闪烁等等。整个这套程序的核心是图像显示接口(IDI)；
 (b) 图形显示，提供以图形表示数据和交互式数据缩放所需的函数。整套图形程序自成一体，与设备无关，操作基于 Aironet 图形库(AGL)；
 (c) 一般图像处理，包括典型的算术运算，比如过滤、重复取样、插值、旋转、抽头/插头，快速傅里叶变换(FFT)等等；
 (d) 标格文件系统，提供一套完整的功能处理标格数据，其中包括读、写、编辑、检索、归类、回收等等；
 (e) 拟合程序包，提供必要的工具拟合非线性函数，并以表格和图像格式制作数据分布模型；
 (f) 数据输入输出，将数据调入调出磁带式磁盘。

31. 接口将应用程序与监视器联接在一起，并界定与应用程序和监视器的可能交互作用。一个最低附加的挂接层用于将 MIDAS 系统本身与主操作系统接合在一起，而不用于应用程序。MIDAS 系统以三套一般接口作为基础，便于应用程序并入 MIDAS 系统。这三套一般接口是：(a) “标准接口”，用于一般输入输出和图像存取；(b) “表格接
口”，用于接入表格结构。 (c) “图形接口” 方便操作 MIDAS 系统数据结构的图形表示法，为使系统操作简便，采用了一层操作系统例行程序，作为 MIDAS 与局部操作系统之间的屏蔽。

MIDAS 系统的控制语言

32. MIDAS 命令语言(MCL)提供以现有命令设计构造复杂命令程序的工具。由于所有应用程序都通过一套标准的接口获得其参数，所以将命令串联在一起非常容易。每个程序都使用前面的命令结果。其实除系统命令之外，MIDAS 系统的所有命令都是 MCL 程序本身。一般说来， MCL 提供编程语言的一些基本功能，例如参数定义、循环、条件语句和转移分支、全局/局部变量、参数(又为循环式)程序调用以及内部功能等。MCL 是一种解释语言，即局部变量的定义可在程序的任何地方完成，在执行 MCL 的程序之前，无需编译和连接步骤。

33. MIDAS 系统中的数据项可分成若干组：
 (a) 帧：统一数据的数据集，例如图像或波谱。最多可支持 16 维数；但大多数应用均限于 2 维数；
 (b) 图表：按行列编排的多种数据的集合；
 (c) 描述符：与一般数据库有关的变量，例如帧和图表，用于数据的详细描述；
 (d) 关键词：与进程或对话有关的变量，类似于描述符，主要用于任务之间的信息传送及对任务的控制；
 (e) 编目：载有图像或图表的索引，或为数据的组合而拟合文件。

注

2. 《大会正式记录，第五十一届会议，补编第 20 号》(A/51/20)，第二. B 节，第 39 段。