EXOLAUNCH

1st Round Webinar Announcement of Opportunity EXOpod CubeSat Deployment

Date: July 31, 2024

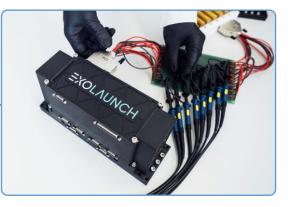
EXOLVUNCH

Market-leading provider of innovative satellite launch integration and deployment technologies with extensive mission management expertise, deep engineering capabilities, customer-centric approach, and a successful track record of delivering mission critical solutions to the commercial space industry SPACE. LET US TAKE YOU THERE. EXOLAUNCH.COM

ROBERT W. SPROLES, PH. D.

FLIGHT TESTED, PROPRIETARY MISSION CRITICAL HARDWARE

CARBONIX Separation System



EXOPOD Cubesat Deployer

EXOPORT Multi-Satellite Adapter

EXOBOX Deployment Sequencer

MARKET LEADER WITH EXTENSIVE EXPERIENCE ON MULTIPLE LAUNCH VEHICLES AND DEPLOYMENT SCENARIOS

TRACK RECORD OF DIVERSE GLOBAL LAUNCH PARTNERS

2017-2019	2020-2021	2022	2023	2024 (CONTRACTED/EXECUTED)	2025-2026 (CONTRACTED/FORECASTED)	
> SOYUZ-2	FALCON 9	FALCON 9	> FALCON 9	ELECTRON (Northstar)	> FALCON 9	
17 smallsats	Starlink 🥺	Transporter 📴	Transporter <mark>6</mark>	4 smallsats	Transporter 13	
Baikonur	3 smallsats	29 smallsats	37 smallsats	RocketLab LC1		
	Cape Canaveral	Cape Canaveral	Cape Canaveral		> Falcon 9 Dawn-Dusk	
SOYUZ-2				> FALCON 9		
14 smallsats	FALCON 9	FALCON 9	FALCON 9	Transporter 10	FALCON 9	
Vostochny	Starlink 11	Transporter 🛃	Transporter 7	28 smallsats	Bandwagon ᢃ	
	3 smallsats	12 smallsats	21 smallsats			
> SOYUZ-2	Cape Canaveral	Cape Canaveral	Vandenberg	> FALCON 9	> FALCON 9	
11 smallsats				Bandwagon 💶	Transporter 14	
Vostochny	SOYUZ-2	FALCON 9	> FALCON Heavy GEO	4 smallsats		
	15 smallsats	Transporter 5	1 smallsat (First in GEO)		> FALCON 9	
> SOYUZ-2	Plesetsk	21 smallsats	Cape Canaveral	> ELECTRON (NASA)	Bandwagon 4	
11 smallsats		Cape Canaveral		1 smallsat		
Vostochny	> FALCON 9		FALCON 9		> FALCON 9	
	Transporter 1	ELECTRON	Transporter 8	> FALCON 9	Transporter 15	
> SOYUZ-2	30 smallsats	1 satellite	32 smallsats	Transporter 💶		
28 smallsats	Cape Canaveral	RocketLab LC1	Vandenberg		> FALCON 9	
Vostochny				FALCON 9	Transporter 16	
	FALCON 9		> ELECTRON	Bandwagon 2		
> ELECTRON	Transporter 2		1 smallsat		> FALCON 9	
1 smallsat	29 smallsats		RocketLab LC1	FALCON 9	Transporter 17	
RocketLab LC1	Cape Canaveral			Transporter 12		
			> PSLV		> FALCON 9	
> SOYUZ-ST		and the second second	1 smallsat	ISAR Spectrum	Transporter 18	
1 smallsat			SHAR			
Guiana Space		100000		> ARIANE 6	> STARSHIP	
Centre			> FALCON 9			
			Transporter 🨏	PSLV		
			34 smallsats			
EXOLAUNCH		CREDITS: SPACEX	Vandenberg			PRIVATE & CO

Exolaunch's SpaceX Heritage

Taking Your Ideas To Orbit

Exolaunch transforms complex global launch campaigns into a seamless and costeffective customer experience

Customer Base

100+ LOYAL, A-LIST GLOBAL CLIENTS, WITH 95%+ REPEAT BUSINESS

EXOpod Deployer

EXOpod Nova 6U/8U

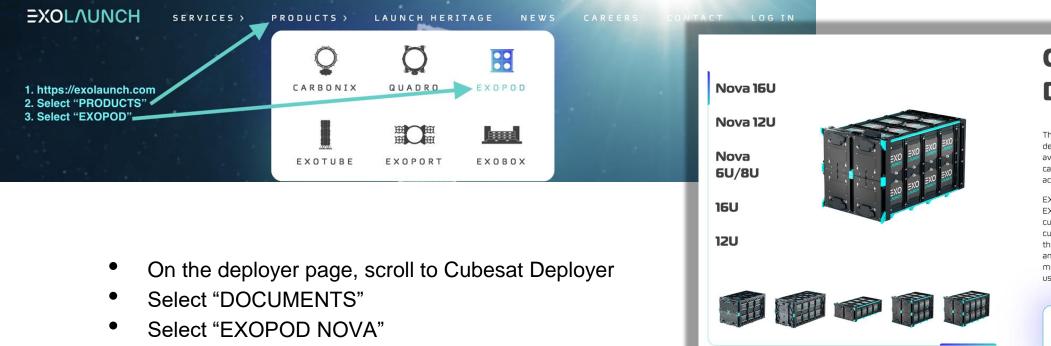
EXOpod NOVA is the most advanced cubesat deployment system on the market. It is available in 6U, 8U, 12U and 16U sizes, and can be broken down into smaller slots to accommodate cubesats of any size.


EXOpod NOVA redefines the envelope for CubeSats with as much as 400% additional volume for lateral protrusions, 30% extra mass, and full backwards compatibility with the CubeSat design standard to suit a wide range of use cases. EXOpod is the first commercially-available deployer to deploy a 16U satellite in LEO, and EXOpod NOVA is the only one to do so in GEO.

EXOpod	COMPATIBILITY	CLAMPING MECHANISM	
EXOpod Fact Sheet	Flight-ready on multiple launch vehicles and quickly adaptable to most launchers on the market.	Cubesats are secured in their slots using our industry-leading clamping mechanism once the doors are locked.	
FLEXIBILITY	FAST RESET TIME	INCREASED AVAILABLE MASS	
Fast-growing flight record of cubesats ranging from 0.25U to 16U.	EXOpod can be integrated, triggered and reset in a matter of minutes.	Higher available mass than any other deployer catering to cubesats on the market.	
ACCESS WINDOWS	FLIGHT HERITAGE	ITAR-FREE	
Windows on three sides of the deployer provide access to the cubesat within, useful for inspection, testing and RBF	EXOpods have flown on 22 missions with 256 cubesats since 2017.	The system is not subject to export restrictions of any kind.	
pin removal after integration.		MADE IN GERMANY	

EXOpod History

© 2013-2024 EXOLAUNCH GmbH All Rights Reserved


Accessing Documentation

Documentation Links - Exolaunch EXOpod User Manual

Direct Link

https://exolaunch.com/documents/EXOpod_Nova_User_Manual_March_2024.pdf

- Browse to <u>https://exolaunch.com</u>
- In the header, select "PRODUCTS"
- In the selection box, select "EXOPOD"

Cubesat Deployer

The EXOpod is the most advanced cubesat deployment system on the market. It is available in 6U/8U, 12U and 16U sizes which can be broken down into smaller slots to accommodate cubesats of any size.

EXOpod Nova, the latest generation of the EXOpod line, is rapidly expanding what the cubesat design standard (CDS) is capable of – cubesats launching with Nova can now increase the volume of their lateral protrusions by **400%** and their mass by **30%**, enabling a wider and more powerful array of satellite designs and use cases.

PDF C	DOCUMENTS	~
EXOP	0 D	
EXOP	OD NOVA	
TEST	POD	

4. Scroll to "Cubesat Deployer" section

5. Select "DOCUMENTS"

6. Select "EXOPOD NOVA"

Documentation Links - SpaceX Transporter Rideshare Payload User Guide

Direct Link

https://storage.googleapis.com/rideshare-static/Rideshare_Payload_Users_Guide.pdf

- Browse to <u>https://www.spacex.com</u>
- In the header, select "RIDESHARE"

Scroll until you see "Payload User's Guide"

RESERVE YOUR RIDE ONLINE

Find all the information you need to make a reservation online, everything from plate configuration to technical specifications to licensing information. Once your reservation request is approved, SpaceX will provide you with a welcome package outlining next steps for launch.

Payloads are received at the launch site around L-30 and processories of SpaceX facility. More details can be found in the Riderinane User's Guide.

PAYLOAD USER'S GUIDE

CAKE TOPPER USER'S GUIDE

Design and Testing Requirements

Design Requirements

• The Cubesat must be a 1U, 2U, or 3U cubesat and must adhere to the dimensions and mass in Table 1, page 15, of the Exolaunch EXOpod NOVA User Manual.

Description	Units	Letter	10, 20, 30, 40	
Cubesat Rail Length (Z)	(±0.5 mm)		A	1U: 113.5 2U: 227.0 3U: 340.5 3U XL: 365.9* 4U: 454.0
Cubesat Rail Width (X)	(±0.1 mm)		В	100.0
Cubesat Rail Height (Y)	(±0.1 mm)	mm	С	100.0
Max Space Between Rails (X		D	07 7	
Max Space Between Rails (Y		Е	87.2	
Max Protrusion from Rail (X)		F	25.0	
Max Protrusion from Rail (Y)		G	25.0	
Number of Tuna Cans	-	-	1	
Distance Between Tuna Car	mт	-	-	
Maximum Mass***	kg	-	1U: 2.5 2U: 4.5 3U: 7.0 4U: 9.0	

Table 1: Maximum Cubesat dimensions

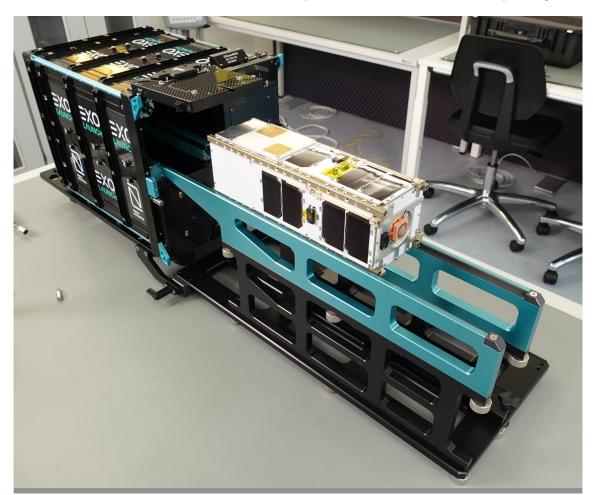
Environmental Test Requirements

- The Cubesat must be tested in accordance with the SpaceX RPUG requirements for fully containerized cubesats
 - See Section 6.6 of the SpaceX RPUG.
 - SpaceX allows a qualification / acceptance approach, or a protoflight qualification approach
 - All REQUIRED tests must be performed as specified.
 - Advised test are recommended, but not required.

		Unit/Fleet Qualification and	d Acceptance Approach	Flight Unit		
Test	Required/Advised	Qualification	Acceptance	Protoflight Qualification		
		Unit Not Flown	Unit Flown	Unit Flown		
Quasi Static Load						
Sine Vibration	Not Required					
Acoustic						
Shock	Advised	6 dB above MPE, 3 times in each of 3 orthogonal axes	Not Required	3 dB above MPE, 2 times in each of 3 orthogonal axes		
Random Vibration ¹	REQUIRED	3 dB above acceptance for 2 minutes in each of 3 axes	MPE spectrum for 1 minute in each of 3 axes	MPE spectrum for 1 minute in each of 3 axes		
Electromagnetic Compatibility ²	REQUIRED	6 dB EMISM by Test or 12 dB EMISM by Analysis	Not Required	6 dB EMISM by Test or 12 dB EMISM by Analysis		
Combined Thermal Vacuum and Thermal Cycle ³	Advised	±10 °C beyond acceptance for 27 cycles total	Envelope of MPT and minimum range (–24 to 61 °C) for 14 cycles total	±5 °C beyond acceptance for 20 cycles total		
Pressure Systems ^{4,5}	REQUIRED	Pressures as specified in Table 6.3.12-2 of SMC-S-016 following acceptance proof pressure test, duration sufficient to collect data. Minimum 2.0 times MEOP	1.5 times ground MEOP for pressure vessels and pressure components. Other metallic pressurized hardware items per References 4 and 5 from SMC-S-016	See Note 5		
System-Level Pressure Leak Test ⁶	REQUIRED	Not Required	Full Pressure System MEOP Leak Test per Section 6.8.4	Full Pressure System MEOP Leak Test per Section 6.8.4		
Pressure Vessel Leak Test ⁶	REQUIRED	Not Required	Pressure Vessel Level MEOP Leak Test per Section 6.8.4	Pressure Vessel Level MEOP Leak Test per Section 6.8.4		

Table 6-2: Containerized CubeSat Unit Test Levels and Durations

EXOLAUNCH


© 2013-2024 EXOLAUNCH GmbH All Rights Reserved

It is strongly recommended that you read the Exolaunch EXOpod User Manual and SpaceX Rideshare Payload User Guide in their entirety before submitting your application.

Integration and Shipment Process | CubeSats

Cubesat Shipping and Integration Process

Upon successful assembly and testing of your cubesat, you will ship your satellite to the Exolaunch HQ in Berlin, Germany, where Exolaunch will integrate the cubesat into the EXOpod NOVA deployer.

