This lecture is NOT specifically about KiboCUBE and covers GENERAL engineering topics of space development and utilization for CubeSats. The specific information and requirements for applying to KiboCUBE can be found at: https://www.unoosa.org/oosa/en/ourwork/psa/hsti/kibocube.html
Yuji Sakamoto, Dr.

Position:
2006 - Assistant Professor (-2015), Associate Professor (2015-)
Department of Aerospace Engineering, Tohoku University
2021 - Associate Professor
Division of Mechanical and Space Engineering, Hokkaido University

Research Topics:
Design, Assembly, and Evaluation of Micro and Nano Satellites
Satellite Operation and Ground Station Management

TU = Tohoku University
HU = Hokkaido University
DOST = Department of Science and Technology, Philippines
UPD = University of the Philippines Diliman
1. Introduction to Satellite Operations
2. Satellite Orbit and Mission Lifetime
3. Communication System
4. Ground Station + Virtual Tour 1: Operation Rooms
5. Launch and First Contact
7. Conclusion
1. Introduction to Satellite Operations
1. Introduction to Satellite Operations

What do you need to think about for the operation of YOUR satellite?
Satellites rotate around the Earth, about **14 to 16 times** per day in Low Earth Orbit (LEO)

About **10 to 12 minutes** per contact from a single ground station, and about **4 passes per day**

=> data communication time will be total of **40 to 48 minutes** per day

Satellite operations *send commands* to satellite from ground stations and *receive telemetries* from satellites

BEFORE the communication, we need to prepare the daily mission scenario and the detailed procedure of mission tasks.
• Satellites **cannot be repaired** in orbit after the launch
• We can only communicate with them to **conduct planned missions, solve unexpected problems**
• **Variations** of operation **scenarios and procedures** need to be **considered and tested** **BEFORE** the completion of satellite development.

=> this is strongly relating to **software concept and design**

=> operations are **not only** a matter of **communication**. This is relating to other subsystems (**C&DH, ADCS, power, thermal, ...**)
2. Satellite Orbit and Mission Lifetime
2. Satellite Orbit and Mission Lifetime

Type of Satellite Orbits

- **SSO: Sun Synchronous Orbit (Polar Orbit)**
 - ISS Orbit ~400km
- **LEO: Low Earth Orbit**
- **GEO: Geosynchronous Orbit** ~36,000km

(C)Tohoku Univ.
2. Satellite Orbit and Mission Lifetime

Orbit of International Space Station (ISS)

- ISS orbit (400km, 51.6 deg)
- Regions around Arctic and Antarctica cannot be observed
- Solar angle to orbit is changing every day

=> affects daily observation timing to specific locations
2. Satellite Orbit and Mission Lifetime

Influence of the Eclipse

- For ISS released satellites, **all sunshine phase** continues for a few days **around summer and winter**
- **Solar angle to orbit** (= beta angle) can be **more than 70 degrees**.
- **0 deg in Cold Case** can be increased to **40 or 50 degrees in Hot Case**

![Diagram showing the influence of the eclipse on satellite orbit and mission lifetime](image)
2. Satellite Orbit and Mission Lifetime

Atmospheric Drag

- DIWATA-1: 52.4 kg, 47 months
- RAIKO: 2.7 kg, 10 months

[Diagram showing the altitude of satellite orbits through different atmospheric layers.]
3. Communication System
3. Communication System

Introduction to Communication System

• Communication system is required for:
 - upload commands
 - download house-keeping data and mission data

• Typical frequencies:
 - VHF (around 144 MHz, amateur radio)
 - UHF (around 435 MHz, amateur radio)
 - S-band (around 2 GHz)
 - X-band (around 8 GHz)
3. Communication System

Deployable Antenna

- **Lower frequency** bands require **longer antennas**.
- Typical frequencies: **UHF** (around 144MHz) and **VHF** (around 435MHz)
- Merit: **reasonable prices** for the setup of amateur radio **ground station**
- Data rate can be slow (**1.2kbps**, **9.6kbps**, **38.4kbps**, etc.)
 - limited assigned band width
- **Folded antennas must be automatically deployed** for communications

![Deployable Antenna Image]
3. Communication System

Patch Antenna

- **S-band (2GHz)** and **X-band (8GHz)** will be used for high-speed data communications
 - example, **2Mbps** (0.5W out) by S-band, **20Mbps** (1.0W out) and more by X-band
 - wide assigned bandwidth especially for X-band
- **Demerit**: ground station cost (large parabola antenna system)
- **No deployment mechanism** required => low risk of communication failure

patch antennas

(C) Tohoku Univ.

assembly

patch antennas with covers

(C) Tohoku Univ.

(for GPS and S-band uplink)
3. Communication System

High Gain Antenna

- High gain antennas require **pointing control** to satellite or ground station
- Narrow beam width can achieve **higher gain**
- Power resource is required for both **transmission** amp and **attitude control** components
3. Communication System

Link Budget Design

• **Specs** of communication system can be designed by **link budget** analysis. Acceptable **data rate** (10kbps, 100kbps, 1Mbps, etc.) can be **calculated** by the **balance of hardware specs**.

1. Hardware specs of **both satellite and ground station**: antenna (size and gain), **transmitter** (output power), **receiver** (minimum input signal levels)
2. Data **modulation**: modulation type (FSK, BPSK, QPSK, etc.)
3. Orbit: **distance** at **nearest** and **farthest** (satellites around horizon)
4. Ground Station
4. Ground Station

Types of Ground Stations

- **Ground station antenna** must be controlled to point toward the satellite during observation chance.
- **Future satellite position** can be calculated.
- **Satellite orbits** at reference times are available in the Two Line Element (TLE) format, which are distributed by celestrak.com etc.

![Yagi-Antenna for VHF-band](image1.png)

![Dish-Antenna for S-Band](image2.png)
4. Ground Station

Geographical Position for the Ground Station

- The latitude of CubeSats deployed from the ISS is between about \(+\textbf{51.6 degrees}\). Their ground stations need to be located in that region.

- Multiple ground stations for telemetry downlink can be prepared around the world to increase the amount of mission data (accepted countries are defined by ITU applications except for amateur radio satellites)
4. Ground Station

Items for Ground Station

1. **Antenna with controllable motors**
2. **Transmitter and receiver** with functions of suitable **modulation/demodulation** and **coding/decoding**
3. Operation **software**

Virtual Tour 1: operation rooms
5. Launch and First Contact
5. Launch and First Contact

Satellite Delivery

• Satellite is **delivered** to JAXA **several months before the launch**.
• CubeSats are **assembled into the J-SSOD**, deployment container
• After the ceremony, J-SSOD including CubeSats are **shipped to launch site** for further integration to the cargo spacecraft

[Image of J-SSOD and CubeSats]

5. Launch and First Contact

Operational Phase of CubeSat deployed from ISS

- **Launch Phase**
 - CubeSat is launched and delivered to the ISS.

- **Preparation Phase**
 - CubeSat is stored in the ISS and prepared for deployment into orbit.

- **Early Operation Phase**
 - CubeSat is deployed from the ISS, communication link is established, and initial inspection is conducted.

- **Mission Phase**
 - CubeSat conducts its missions.

- **Disposal Phase**
 - CubeSat is set to disposal mode and waits until the re-entry into Earth’s atmosphere.
5. Launch and First Contact

Launch Phase

1. Cargo spacecraft HTV is launched by launch vehicle H-IIB from the Tanegashima Space Center
 - cargo spacecraft Cygnus is also available, this is launched from the US
2. HTV approaches and docks to the ISS after several days
3. J-SSOD containing CubeSats are handled inside the ISS
 ![CubeSats experience mechanical vibration during the launch](image)
 ![Power supply for CubeSats must be turned off at all times until deployment to space](image)
5. Launch and First Contact

Preparation for Satellite Deployment

4: CubeSats are prepared for deployment by **astronauts**

5. J-SSOD and deployment palette are **transferred to outside**

6. They are attached to the **tip of robotic arm of Kibo**

7. Astronaut **triggers the switch** for the deployment

Deployment preparation, and deployment from the ISS © JAXA
5. Launch and First Contact

Satellite Deployment

DIWATA-1 (2016, 52.4kg)

(C) JAXA
5. Launch and First Contact

First Contacts

8. CubeSats **automatically start** the functions in space, including **RF transmission**

9. We observe **1st signals** from a satellite at the ground station, **most exciting moment**

10. **Satellite health** is checked including normal power generation, battery charge, temperature of components, etc.
11. We need to **confirm the successful of command uplink** as well as telemetry receiving.

- **a lot of CubeSats had defects** in command function

- **[!] be careful of the electrical noise environment inside** of satellite

12. We send commands of **camera trigger** and **data download**, and check the **1st light images**

Images obtained by CubeSat RAIKO just after the deployment from the ISS

1st light images by RAIKO
6. Mission Operations
6. Mission Operations

Upload Commands and Download Status or Image Data

First-light obtained by the mission camera and downlinked to the ground station.
6. Mission Operations

Realtime Monitor and Command

- Original software for **status decoding** and **quick commands** will be prepared.
 - solar **power generation** (SCP-V, I, P)
 - **power consumption** by bus components (BUS-V, I, P)
 - **battery** charge/discharge (BAT-V, I, P) & **temperature** (BAT-T)
 - **on/off state** of each bus component & on/off **quick commands**
 - **red alert lamps**

- For quick treatment in **emergency cases**, **buttons for real-time quick command** will be prepared

- **Command counter** (incremented by single command reception) will be **convenient**.

=> command link **cannot be stable** any time
6. Mission Operations

Stored Command

- **Stored command** function is important when we want to execute task in invisible time.
- Uploaded commands are not executed instantly but just stored in the on-board memory.
- Each command line is including the specific date to execute.
- Combination of specific date and waiting time will be convenient for reusability of the procedure.

<table>
<thead>
<tr>
<th>Text File</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>-----</td>
</tr>
</tbody>
</table>

example of stored command definition

```
0x01 01 #CAM-ON #WAIT=5 #DATE=2021/11/18 09:00:00 UTC
0x02 02 35 0130 #ATT-CONTROL-TO-TARGET(N35,E130) #WAIT=180
0x01 03 #CAM-TAKE-A-PHOTO #WAIT=5
0x01 04 #CAM-OFF #WAIT_A=5
```

#SC_DATE ... specific date to execute the command
#SC_WAIT_A ... waiting time (sec) after the command execution

converted to **HEX binaries** (by Sat. Control Software)

upload to satellite
According to the simulation results and actual measurements, software parameters set in on-board computers will be adjusted.

We often mistake the definitions of plus/minus sign, this cannot be avoided.

Analysis through comparison of simulation and flight data

3-axis magnetic sensors
6. Mission Operations

Operation Routine

Make Operation Plan

Upload Command List

Evaluate Status

Unmanned Mission Data Download

Virtual Tour 2: Command Upload in Real Operation

Daytime

Night
7. Conclusion
7. Conclusion

- **CubeSats** deployed from the **ISS** will follow **similar orbits** as the ISS. The orbit has **different illumination** conditions of the **Sun** throughout the year.
- **Mission duration** of a CubeSat depends on the mechanical characteristics, such as **mass and size**, and the **magnitude of solar activity**.
- **Link budget** between the CubeSat and the ground station shall be carefully **designed** for steady communication in both directions: Up link and Down link.

 [!] **more important: noise condition inside of satellite** must be **carefully surveyed** and **decreased** as much as possible. A lot of CubeSats ended in failure by a **command link malfunction**.

- Thorough mission planning, **ground evaluation**, **stepwise orbit verification**, and **efficient operation framework** are important.
Thank you very much.

[Disclaimer]
The views and opinions expressed in this presentation are those of the authors and do not necessarily reflect those of the United Nations.