KiboCUBE Academy

Lecture 06 – Second Edition

CubeSat Design for Safety Requirements

Tohoku University
Department of Aerospace Engineering
Associate Professor Dr. –Ing. Toshinori Kuwahara

This lecture is NOT specifically about KiboCUBE and covers GENERAL engineering topics of space development and utilization for CubeSats. The specific information and requirements for applying to KiboCUBE can be found at: https://www.unoosa.org/oosa/en/ourwork/psa/hsti/kibocube.html
Toshinori Kuwahara, Dr. –Ing.

Position:
- 2015 - Associate Professor, Department of Aerospace Engineering, Tohoku University
- 2017 - Technical Advisor, Nakashimada Engineering Works, Ltd.
- 2017 - Technical Advisor, ALE Co., Ltd.
- 2020 - Chairperson, University Space Engineering Consortium Japan (UNISEC)
- 2021 - Co-founder/CTO, ElevationSpace Inc.

Research Topics:
Space Development, Utilization, and Exploration by Small Spacecraft Technologies
1. CubeSat System Engineering Process
2. Safety and Mission Assurance Activities
3. Safety Design Process
4. Safety Design of CubeSat
5. Documentation and Ground Testing
6. CubeSat Mission Assurance
7. Conclusion
1. CubeSat System Engineering Process
1. CubeSat System Engineering Process

1.1. System Engineering Process

 CubeSat Mission Initiation

Mission Analysis and Design
- Mission Definition Review (MDR)

System Analysis and Design
- System Definition Review (SDR)

Preliminary Design
- Preliminary Design Review (PDR)

Detailed Design
- Critical Design Review (CDR)

Satellite Manufacturing
- Qualification Review (QR)
- Launch Readiness Review (LRR)

Output
- Mission Definition
- System Definition
- Development of Breadboard Model (BBM)
- Development and Verification of Engineering Model (EM)
- Manufacturing and Testing of Flight Model (FM)

Launch and Operation!
Input: Mission Objectives

Output: Mission Requirements and Constraints

- Functional Requirements
- Operational Requirements
- Constraints

Mission Constraints:

- Launch Opportunities
 (Mass properties, Size, Launch Environment, Orbit, etc.)
- Schedule
- Cost
- Human Resources
- Development Facilities
- Interfaces
- Regulations
- Space Environment

Safety Requirement!
1. CubeSat System Engineering Process

1.3. System Analysis and Design

Input: Mission Requirements

Output: System Definition

- Preliminary Mission Concept
- Satellite Orbit, Number of Satellites
- Payload Instruments
- Satellite Bus System
- Launch Vehicle Selection
- Operation Planning
- Ground Station
- Ground Support Equipment

Payload Instruments
- Types of Instruments
 - Communication
 - Optical Observation
- Mass
- Size
- Power Consumption
- Voltage
- Telemetry Data
- Mission Data
- Command Data
- Thermal Control
- Pointing Accuracy
- Operational Constraints

Bus System
- Mass
- Size
- Power Consumption/Generation
- Attitude Control
- Telemetry Data
- Command Data
- Computational Capability
- Communication Capability
- Thermal Control Capability
- Orbit Control
- Propulsion
- Autonomy
A satellite system consists of several subsystems. Typical categorization is as follows:

- Power Control System
- Communication System
- Command and Data Handling System
- Structure and Mechanism System
- Thermal Control System
- Attitude Control System
- Orbit Control System (Advanced)
- Payload System

+ Harness System
1. CubeSat System Engineering Process

1.5. Satellite System Design and Verification

- Iterative design refinement and verification process
- Satellite system sizing and budget control through trade-offs
 - Mass Budget (Mass property)
 - Power Budget (Power consumption, generation, and storage)
 - Size Budget
 - Communication Budget
 - Data Storage Budget
 - Computational Budget
 - Operation Time Budget
 - Financial Budget
 - Schedule Budget

Satellite system design is an art!
1. CubeSat System Engineering Process

1.6. Small Satellite System Engineering Activities

Space Education through Small Satellite Projects

Project members and students experience:

- Mission Analysis
- System Design
- System Development
- Component Procurement
- Component Development
- System Integration
- On-board Software / Algorithm Development
- Ground Verification
- Ground Environmental Test
- Safety Design, Safety Review
- Satellite Delivery and Launch
- Ground Station Installation
- Satellite Operation, Instrument Calibration
- Satellite Data Analysis

© KIT

© Tohoku University
2. Safety and Mission Assurance Activities
Mission Assurance:

- Satellite projects shall conduct activities to maximize the probabilities of mission success, by mitigating any risks that threaten mission success, such as design failure, production failure, test and verification failures, etc.

Safety Assurance:

- Safety design requirements necessitate satellite systems to be equipped with multiple inhibits against the hazards for the safety of the surrounding environment of the satellite, which could result in excess restrictions of the satellite functionalities.

Safety and Mission Assurance:

- Satellite projects shall find the best balance between safety design and mission assurance within the limited resources of the satellite system, as well as the project.
2. Safety and Mission Assurance Activities

2.2. Safety and Mission Assurance Activity

- Safety assurance and mission assurance are often design drivers in opposing directions.
- It is very challenging that both aspects are satisfied in the limited resources of a small satellite system, especially their small mass and envelope.
- Reducing the number of components, ensuring reliability of each component, and eliminating redundant design as much as possible is the key design approach.
2. Safety and Mission Assurance Activities

2.3. Safety Design of Satellite System

- Satellite development projects shall consider safety design aspects for the entire project life cycle.
 - Development and handling phase on ground
 - Ground facilities and equipment
 - Personnel
 - Transportation
 - Satellite launch phase
 - Launch site
 - Launch vehicle and other satellites being launched by the same vehicle
 - Satellite release phase (in case it is released from the ISS)
 - International Space Station
 - Astronauts
 - Operational phase
 - International Space Station and other spacecraft
 - Environment and humans on Earth

- Safety design requirements depend on launch vehicles and release systems.
- The safety design plan, implementation, and verification results shall be confirmed by safety reviews.
- Safety design requirements can greatly affect the system design of the satellite, and hence they shall be considered from the very beginning of the satellite project.
2. Safety and Mission Assurance Activities

2.4. CubeSat Standardization History

Some standards are available:

- CubeSat Design Specification rev.13 (2014/2/20)
 6U CubeSat Design Specification rev. 1.0 (2018/6/7)
 - California Polytechnic State University
 (https://www.cubesat.org/)

- CubeSat Subsystem Interface Definition version 1.0
 - UNISEC Europe (2017/8/24)

- ISO Space systems – Cube satellites (CubeSats)
 (https://www.iso.org/standard/60496.html)

- JEM* Payload Accommodation Handbook Vol.8 D
 - JAXA (* Japanese Experiment Module (JEM) = Kibo)
 (https://iss.jaxa.jp/kibouser/provide/j-ssod/#sw-library)
 English (2020/7/31)

KiboCUBE provides deployment opportunities from the ISS Kibo module.

The possible launch vehicle can be one of the transfer vehicles to the ISS:
- HTV-X: JAXA H-II Transfer Vehicle
- Dragon: SpaceX
- Cygnus: Orbital Sciences Corporation

The launch environment is different in each vehicle.

CubeSats are installed in the satellite deployment POD (J-SSOD: Japanese Experiment Module (JEM) Small Satellite Orbital Deployer) and stowed inside the Cargo Transfer Bag (CTB) with soft packing material.

Vibration conditions are very mild relative to those encountered during a direct launch.

Frequent launch opportunities are provided, up to 4 times per year.

Adopting an approximate orbital altitude of 400 km ensures the CubeSats re-enter the atmosphere after their mission lifetime without becoming space debris.
2. Safety and Mission Assurance Activities

2.6. Kibo Release Opportunities

Reference: JEM Payload Accommodation Handbook Vol. 8 D (English)
2. Safety and Mission Assurance Activities

2.7. Launch Conditions of KiboCUBE’s Launch Vehicles

- Random vibration condition
 - HTV-X: 6.0 [g]
 - SpaceX Dragon: 9.0 [g]
 - Orbital Cygnus: 9.0 [g]

- Quasi-static acceleration condition
 - HTV-X: 6.0 [g]
 - SpaceX Dragon: 9.0 [g]
 - Orbital Cygnus: 9.0 [g]

- Shock condition
 - N/A

Reference: JEM Payload Accommodation Handbook Vol. 8 D (English)
2. Safety and Mission Assurance Activities

2.8. Environment Conditions: Launch and at the ISS

• Maximum Air pressures
 • HTV-X: 104.8 [kPa]
 • Dragon: 102.7 [kPa]
 • Cygnus: 104.8 [kPa]
 • Inside the ISS: 104.8 [kPa]

• Air pressure changing rates
 • HTV-X: 0.878 [kPa/sec]
 • Dragon: 0.891 [kPa/sec]
 • Cygnus: 0.891 [kPa/sec]
 • Inside the ISS: 0.878 [kPa/sec]
 • Inside the JEM Airlock: 1.0 [kPa/sec]

• Temperature conditions
 • HTV-X: +10 ~ +32 [deg C]
 • Dragon: +18.3 ~ +29.4 [deg C]
 • Cygnus: +10 ~ +46.1 [deg C]
 • Inside the ISS: +16.7 ~ +29.4 [deg C]
 • Outside the ISS: -15 ~ +60 [deg C]

• Humidity conditions
 (Dew Point, Relative Humidity)
 • HTV-X: -34 [deg C], N/A
 • Dragon: N/A, 25~75 [%]
 • Cygnus: +4.4 ~ +15.6 [deg C], 25~75 [%]
 • Inside the ISS: +4.4 ~ +15.6 [deg C], 25~75 [%]

Reference: JEM Payload Accommodation Handbook Vol. 8 D (English)
2. Safety and Mission Assurance Activities

2.9. Relationship between Compatibility, Safety Assurance, and Mission Assurance

- Space systems including CubeSats are required to satisfy compatibility requirements of the corresponding launch vehicles such as mass, size, environmental conditions, etc.
- Safety Assurance activities are applicable within the scope of compatibility compliance which imposes further and more severe requirements to the space systems.
- Mission Assurance activities are applicable within the scope of safety assurance compliance which attempts to achieve a desired system reliability by managing resources of the space systems, retaining a portion as spare for introducing redundancies and/or even more design margins.

[Diagram showing the relationship between Compatibility, Safety Assurance, and Mission Assurance]
3. Safety Design Process
Satellite projects experience several design reviews.

- **JAXA/NASA Safety Reviews**
 - Satellites to be launched by Japanese launch vehicles and/or to be released from the ISS through JAXA need to pass the JAXA’s safety reviews (Phase 0/I/II/III).
 - A Safety Assessment Report (SAR) shall be submitted to JAXA for the reviews.
 - Satellites are required to fulfill safety design requirements described in JAXA’s standard documents, such as:

- **Japanese Cabinet Office Safety Review**
 - Satellites with Japanese nationalities and/or operated from Japan need to be safety reviewed by the Japanese Cabinet Office.

- **JAXA Compatibility Verification Review**
 - Confirmation of the compatibility of the satellite verification results with the requirements from JAXA before the delivery.
3. Safety Design Process

3.2. Safety Design Precedence

Safety design precedence described in the system safety standard of JAXA is as follows:

Safety Design Precedence

1. Design to eliminate hazards.
2. Design to minimize hazards.
3. Design to control hazards.
4. Use of safety devices.
5. Use of protective devices.
6. Use of warning devices.
7. Application of hazard control methods relying on special procedures and/or training.

Basically, CubeSats to be released from the ISS are required to apply the above mentioned (1) ~ (3) approaches for their safety designs.

Satellite projects are responsible to conduct system safety program activities throughout the life cycle to ensure safety related to the systems in order to minimize risks and keep them within an allowable level throughout the design, manufacture, test, and operation phases.

Safety Review Processes:

- **Safety Review Phase 0**
 - System safety program plan shall be established, and hazard analysis shall be started to identify hazards.
- **Safety Review Phase I**
 - Detailed safety requirements shall be established, influences and measures of system hazards shall be examined.
- **Safety Review Phase II**
 - Detailed safety assessment shall be conducted, and design compliance with the safety requirements shall be verified.
 - Safety-related verification tests shall be conducted and their results shall be reviewed.
- **Safety Review Phase III**
 - The results of verification of hazard controls shall be clarified, and it shall be confirmed that all safety verifications have been completed.
 - Operational procedures shall be prepared, including emergency measures, handling, storage, and transportation, etc.

3. Safety Design Process

3.4. Satellite Development Schedule and Safety Reviews

Relationship between Satellite Development Schedule, Design Reviews, and Safety Reviews

<table>
<thead>
<tr>
<th>Development Models</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadboard Model (BBM)</td>
<td>1-3</td>
<td>11-12</td>
</tr>
<tr>
<td>Engineering Model (EM)</td>
<td>4-6</td>
<td>2-10</td>
</tr>
<tr>
<td>Flight Model (FM)</td>
<td>7-8</td>
<td>11-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Reviews</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Definition Review (MDR)</td>
<td>1</td>
<td>11-12</td>
</tr>
<tr>
<td>System Definition Review (SDR)</td>
<td>2-4</td>
<td>2-10</td>
</tr>
<tr>
<td>Preliminary Design Review PDR)</td>
<td>5-6</td>
<td>11-12</td>
</tr>
<tr>
<td>Critical Design Review (CDR)</td>
<td>7-9</td>
<td>2-10</td>
</tr>
<tr>
<td>Qualification Review (QR)</td>
<td>10</td>
<td>11-12</td>
</tr>
<tr>
<td>Launch Readiness Review (LRR)</td>
<td>11-12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety Reviews</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Review Phase 0</td>
<td>1-2</td>
<td>11-12</td>
</tr>
<tr>
<td>Safety Review Phase I</td>
<td>3-4</td>
<td>2-10</td>
</tr>
<tr>
<td>Safety Review Phase II</td>
<td>5-6</td>
<td>11-12</td>
</tr>
<tr>
<td>Safety Review Phase III</td>
<td>7-8</td>
<td>2-10</td>
</tr>
</tbody>
</table>

System Level
Subsystem Level
Component Level

Requirements
Definition
Verification/Production

KiboCUBE Academy
Safety design begins with identifying the possible sources of hazards. Hazards can be classified into “Standard Hazards,” that are common for general satellite systems, and “Unique Hazards,” that are unique for each satellite system.

Standard Hazards

1. Flammable Material
2. Material Off-gassing
3. Dust, Toxic or Biological Hazardous Materials
4. Sharp Particles
5. Exposure to mechanical hazards and translation path obstructions
6. Exposure to Touch Temperature Exceedances
8. Exposure to Noise Limit Exceedances
9. Injury/Damage as a Result of Improperly Bonded and Grounded Equipment
10. Injury/Damage as a Result of Improper Power Distribution Circuitry and Circuit Protection Devices

Typical Unique Hazards

11. Mating and Demating of Energized Connector
12. Non-Ionizing Radiation Interference
13. Injury/Damage as a result of Rotating Equipment Failure
14. Injury/Damage as a result of Sealed Container Failure

Others…
• The satellite development team is responsible for the identification of the unique hazards which are specific to each satellite, as only the project team knows about the detailed design of the satellite.

• “Hazard identification” shall be performed throughout all phases. A hazard identification table shall be prepared at the beginning of the project phase and it shall be updated as the design matures.

• Engineers shall be honest in their safety design activities.

Possible Unique Hazards:
• Structure failure (JERG-2-320A (Japanese))
• Deployment mechanisms (JERG-2-330B)
• Shatterable materials (glasses, etc.)
• Handling of heavy items, specifically utilized for the satellite, such as the satellite itself, transport container, etc.
• Electrical short circuit of batteries.
• Propulsion systems
• Pressurized systems
• Unexpected radio frequency emission.
Hazard severity levels can be classified into the following four categories.

Hazard Severity Level Classification

<table>
<thead>
<tr>
<th>Hazard Level</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| I | Catastrophic | Death or severe personal (ISS crew) damage
Irreversible significant environmental impact
Loss of, or severe damage to, public or third party property
Loss of system (ISS, Launch Vehicles) or launch site facilities |
| II | Critical | Major personal damage
Reversible significant environmental impact
Major damage to public or third party property
Severe damage to system or launch site facilities |
| III | Marginal | Minor personal damage
Reversible moderate environmental impact
Minor damage to public or third party property
Major damage to systems |
| IV | Negligible| Any conditions that causes less significant damage than that posed by hazard levels I, II, and III. |
3. Safety Design Process

3.8. Risk Assessment

- Risk assessment criteria is based on the combination of “level of damage” and “the likelihood of occurrence.”
- Safety design shall be applied in order to control hazards and reduce the likelihood of their occurrence.
- Safety design approaches:
 1. Fault Tolerance Design
 2. Design for Minimum Risk
 3. (Probabilistic Risk Assessment)

<table>
<thead>
<tr>
<th>Level of damage</th>
<th>I. Catastrophic</th>
<th>II. Critical</th>
<th>III. Marginal</th>
<th>IV. Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood of occurrence</td>
<td>A. frequently</td>
<td>B. occasionally</td>
<td>C. infrequently</td>
<td>D. only rarely</td>
</tr>
<tr>
<td>Risk Criteria</td>
<td>Distinguished as unacceptable risk</td>
<td>Requiring an acceptable decision</td>
<td>Acceptable risk</td>
<td></td>
</tr>
</tbody>
</table>

Reduce the likelihood of occurrence
The following fault tolerance design requirements shall be satisfied to control hazards, and reduce the likelihood of their occurrence to an allowable level in accordance with the hazard level.

1. Double failures, a combination of one failure and one human error, as well as double human errors shall not cause a catastrophic failure.

2. One failure or one human error shall not cause a severe accident.

<table>
<thead>
<tr>
<th>Hazard Level</th>
<th>Term</th>
<th>Description</th>
<th>Required Control</th>
</tr>
</thead>
</table>
| I | Catastrophic | Death or severe personal (ISS crew) damage
Irreversible significant environmental impact
Loss of or severe damage to public or third party property
Loss of system (ISS, Launch Vehicles) or launch site facilities | Double Fault Tolerant Design
(Three inhibits) |
| II | Critical | Major personal damage
Reversible significant environmental impact
Major damage to public or third party property
Severe damage to system or launch site facilities | Single Fault Tolerant Design
(Two inhibits) |
For some design cases, fault tolerant design cannot be applied, such as structural design, or pressure vessels. In these cases, design shall be managed by considering sufficient design margins, safety factors, and appropriate selection of material and EEE parts.

Applicable design fields:

- Structures
- Pressure vessels
- Pressurized piping and joints
- Pyrotechnic devices
- Material flammability
- Safety-critical mechanisms (mechanisms)
- Material compatibility

3. Safety Design Process

3.10. Safety Design Method – Design for Minimum Risk

1. **Fault Tolerant Design**
 - Energy Source
 - Hazard
 - inhibits

2. **Design for Minimum Risk**
 - Energy Source
 - Hazard
 - Design Margin, Safety Factor
4. Safety Design of CubeSat
This chapter provides some lessons learned from safety design examples of small satellites.

Examples of CubeSat Safety Design:

1. Separation Switches
2. Electrical Circuits
 - Double Insulation
 - Remove Before Flight Pins
 - Flight Connectors
3. Deployment Mechanisms
4. Wire Mechanisms for Deployment Structures

Safety design depends on each satellite!
In general, a CubeSat has different kinds of common catastrophic hazards.

CubeSat Catastrophic Hazards:
1. Structural Failure
 KiboCUBE Academy Lecture #11, #12
2. Battery Failure
 KiboCUBE Academy Lecture #08
3. Radio Frequency (RF) radiation
4. Deployable structures (antenna, solar panels, etc.)
5. Other mission specific failures

The strategic electrical safety design is to use separation switches to control as many hazards as possible, which are related to the electrical power supply.
4. Safety Design of CubeSat

4.3. Separation Switches

• A CubeSat (Small Satellite) is equipped with several (typically three) mechanical separation switches so that it can be securely powered-off while it is stored in the release pod.

• Mechanical switches can be directly inserted in the main current stream, or can drive other electrical switches, such as FET switches. In the former case, relatively large current flows, and in the latter case, little current flows.

Design Example of Separation Switches

© OrigamiSat-1, Tokyo Institute of Technology
4. Safety Design of CubeSat

4.4. Electrical Circuit – Battery and Solar Panels

Electrical power sources of CubeSats:

- Solar Cells – Generate large volumes of power in space, but still generate small amounts in ground facilities. Disabled during launch.
- Battery – Subject to safety control even during a (cold) launch. Over charge and over discharge are also regarded as hazards as the battery could become too hot, and/or explode.

Hazard control can be electrical switches, protection ICs, double insulation, RBF (Remove Before Flight) pins, flight connectors, controlling computer, etc.

Power supply from the solar cells

Solution depends on each satellite.
4. Safety Design of CubeSat

4.5. Example of Electrical Circuit Design of Power Supply System

Example of Electrical Circuit for Safety Design

- **Main Electrical Safety Control of Satellite System**
 - Power Control Computer
 - Separation Switch 1A
 - Separation Switch 1B
 - Separation Switch 2A/2B
 - Flight Connectors
 - Battery (Double Insulation (JERG-2-213 Insulation))
 - Battery shall be re-chargeable from outside the satellite
 - Separation Switch 3A/3B
 - Grounding

Satellite Components
- Solar Cells
- FET Switch
- Hazard

KiboCUBE Academy
When handing over the satellite, separation switches are enabled before the insertion to the pod. It is necessary that safety is also assured in this configuration as well by means of flight connectors, RBF pins, additional switches, etc.
For health verification status of each inhibit for safety, test ports shall be accessible from the outside of the satellite in order to confirm the inhibits are intact through electrical measurements, such as resistances and/or voltages. Battery shall be re-chargeable from outside the satellite through connectors.

4. Safety Design of CubeSat

4.7. Test Port

Generated power inside the facility is low enough to be safe?
4. Safety Design of CubeSat

4.8. Deployment Mechanism

- All deployable mechanisms shall be designed to fulfill two-fault tolerant safety design criteria, as they are classified to be catastrophic hazards.
- Safety design approaches depend on the mechanism used, hardware resources of the satellite, and required reliability, etc.

- **A. Fault Tolerant Design 1**
 - 1 Electrical Switches + 1 Mechanical Switches (Fault Tolerant Design) x 3

- **B. Fault Tolerant Design 2**
 - 3 Electrical Switches (Fault Tolerant Design) x 3 Mechanical Switches (Fault Tolerant Design)

- **C. Design for Minimum Risk + Fault Tolerant Design**
 - 1 Mechanical Switch (Design for Minimum Risk) x 3 Electrical Switches (Fault Tolerant Design)
 - Less Components!
4. Safety Design of CubeSat

4.9. Wire Mechanism of Deployment Structure

- Wire mechanisms can be used for the hold and release mechanism of deployable structures for CubeSats.
- Wire mechanism safety design shall fulfill the requirements specified as below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>More than two wires are required for one constraining object</td>
</tr>
<tr>
<td>2</td>
<td>Test to withstand the expected maximum load by only one wire as a proof test.</td>
</tr>
<tr>
<td>3</td>
<td>Inspect not to exist appearance abnormality after the proof test.</td>
</tr>
<tr>
<td>4</td>
<td>Add cautions when using in the assembly procedure.</td>
</tr>
<tr>
<td>5</td>
<td>If contact between a wire and the other structure is inevitable, the contact surface of the structure shall be rounded adequately.</td>
</tr>
<tr>
<td>6</td>
<td>If a wire mechanism has a knot, loosening shall be prevented by adequate method.</td>
</tr>
</tbody>
</table>

Reference: J-SSOD・Wire Strength Test Report
(https://humans-in-space.jaxa.jp/kibouuser/library/item/j-ssod/25_%5BSat%20Name%5D-WTR-01_Wire_Strength_Test_Report_v2020-01.docx)
4. Safety Design of CubeSat

4.10. Example of Wire Mechanism of Deployment Structure – OrigamiSat-1

Example: Convex deployment antenna of OrigamiSat-1

- Wrap the two phosphor bronze convex-tape antennas around the satellite structure.
- Shorter antenna (430 MHz) is wrapped first, followed by the longer antenna (145 MHz) wrapped on top of it.
- Restrain the tip of the 145MHz antenna with Vectran® threads, fixed to the satellite body.
- Burn threads with nichrome wires.

© OrigamiSat-1, Tokyo Institute of Technology
4. Safety Design of CubeSat

4.11. Thruster System

- Some of the recent advanced CubeSats are equipped with thruster systems.
 - Thruster systems are utilized to change and maintain orbits, as well as de-orbit spacecraft.
 - Technology demonstration missions are conducted to improve the performance of thruster systems for CubeSats.

- **3U CubeSat AQT-D (Pale Blue Inc.)**
 - Technology demonstration of water resistojet thruster system
 - Released from the ISS on November 20, 2019. (Follow up mission on ARTEMIS I)

- Thruster systems need to fulfill safety requirements, which includes various engineering aspects, such as pressure tank, fuel materials, orbital maneuver (crash against the ISS), etc.
4. Safety Design of CubeSat

4.12. Thruster System - Hazard Identification

- Thruster systems can be hazardous against the launch vehicle, ISS, and astronauts, when an unintentional leak/explosion/misfire of propellant happens.

- Hazards shall be identified in all related mission phases, such as Launch & Release phase, astronaut operation phase, and orbital operation phase.

- Satellites released from the ISS require a safety assessment even during the orbital operation phase.
 - CubeSats shall have a lower ballistic coefficient than the ISS to ensure their lower orbital altitude than the ISS.
 - Keep-Out-Zone (KOZ) from the ISS, ±2km in the altitude direction and ±25km in the along-track and cross-track directions, shall not be penetrated by the use of thruster systems to avoid collision with the ISS.

- Identified hazards shall be controlled by applying countermeasures such as:
 - Limit the continuous injection time to suppress the maximum ΔV by implementing three independent timers.
 - Wait until the satellite altitude becomes low enough before starting the use of thrusters, so that the satellite will not enter to the KOZ even if the maximum ΔV is output.

4. Safety Design of CubeSat

4.12. Thruster System - Hazard Identification

- Hazards shall be identified, and their criticality shall be analyzed in all related mission phases, such as Launch & Release phase, astronaut operation phase, and orbital operation phase.

Hazard Identification and Hazard Level Classification

<table>
<thead>
<tr>
<th>Phase</th>
<th>#</th>
<th>Hazard</th>
<th>Hazard Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1). Launch & Release</td>
<td>1) -1</td>
<td>Debris from bursts of propulsion systems (propellant tanks, valves, etc.) can damage other satellites.</td>
<td>Catastrophic</td>
</tr>
<tr>
<td>1) -2</td>
<td></td>
<td>Toxic propellant leakage from the propulsion system (propellant tanks, valves, etc.) can damage ISS/IVA crews.</td>
<td>Catastrophic</td>
</tr>
<tr>
<td></td>
<td>2) -2</td>
<td>Debris from bursts of propulsion systems (propellant tanks, valves, etc.) can damage ISS/IVA crews.</td>
<td>Catastrophic</td>
</tr>
<tr>
<td>2). ISS/IVA Clue</td>
<td>2) -1</td>
<td>Improper ejection of the propulsion system (propellant tanks, valves, etc.) can alter trajectory and collide with ISS structures and visiting vehicles.</td>
<td>Catastrophic</td>
</tr>
<tr>
<td>2) -2</td>
<td></td>
<td>Debris from bursts of propulsion systems (propellant tanks, valves, etc.) may collide with ISS and visiting vehicles.</td>
<td>Catastrophic</td>
</tr>
<tr>
<td></td>
<td>3) -3</td>
<td>Due to deformation of the propellant tank, it may interfere with the rails inside the CubeSat deployment mechanism (J-SSOD-R), preventing the satellite from being released at the specified speed and causing a collision with the ISS structures and visiting vehicles.</td>
<td>Catastrophic</td>
</tr>
<tr>
<td></td>
<td>3) -4</td>
<td>Possibility of collision with ISS or visiting vehicles due to inappropriate operational planning.</td>
<td>Catastrophic</td>
</tr>
</tbody>
</table>
4. Safety Design of CubeSat

4.12. Thruster System - Hazard Causes Analysis

It is necessary to identify the root causes of the hazards and clarify causal relationships with the hazards as illustrated in the below table.

<table>
<thead>
<tr>
<th>#</th>
<th>Hazard Causes</th>
<th>Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Physical failure of propellant tanks and surrounding components.</td>
<td>1)-1, 2)-2, 3)-1, 3)-2</td>
</tr>
<tr>
<td>b)</td>
<td>Selection of propellants unsuitable for handling onboard the ISS.</td>
<td>2)-1</td>
</tr>
<tr>
<td>c)</td>
<td>Erroneous application of power to the mechanism due to an electrical failure.</td>
<td>3)-1</td>
</tr>
<tr>
<td>d)</td>
<td>Contamination inside the valve due to improper dust control.</td>
<td>3)-1</td>
</tr>
<tr>
<td>e)</td>
<td>Undesired thrust generation due to inappropriate design and manufacturing.</td>
<td>3)-1</td>
</tr>
<tr>
<td>f)</td>
<td>Deformation exceeding the allowable range due to the launch and on-orbit environment.</td>
<td>3)-3</td>
</tr>
<tr>
<td>g)</td>
<td>Inadequate operational planning.</td>
<td>3)-4</td>
</tr>
</tbody>
</table>

Hazard Causes Identification

Thruster System Block Diagram

<table>
<thead>
<tr>
<th>Pressure Tank</th>
<th>Electrical Switches: Fault Tolerant Design</th>
<th>Nozzle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Tohoku University
4. Safety Design of CubeSat

4.12. Thruster System - Hazard Control Design

- After identifying the hazard causes, it is necessary to examine each control method.
- A single cause may require multiple controls, which requires a very careful engineering analysis.

Relationships between Hazard Causes and Hazard Controls

<table>
<thead>
<tr>
<th>#</th>
<th>Hazard Causes</th>
<th>Hazard Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Physical failure of propellant tanks and surrounding components.</td>
<td>i) Structural analysis or environmental tests (acceleration, vibration, pressure, temperature, etc.).</td>
</tr>
<tr>
<td>b</td>
<td>Selection of propellants unsuitable for handling onboard the ISS.</td>
<td>ii) Use of non-toxic, non-flammable and inert liquid fuels.</td>
</tr>
<tr>
<td>c</td>
<td>Erroneous application of power to the mechanism due to an electrical failure.</td>
<td>iii) 3 inhibits by 3 separation switches during the launch and before release.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv) 3 inhibits by 3 FET switches after release.</td>
</tr>
<tr>
<td>d</td>
<td>Contamination inside the valve due to improper dust control.</td>
<td>v) Dust protection measures for the valve openings.</td>
</tr>
<tr>
<td>e</td>
<td>Undesigned thrust generation due to inappropriate design and manufacturing.</td>
<td>vi) Confirmation of propulsion force through testing.</td>
</tr>
<tr>
<td>f</td>
<td>Deformation exceeding the allowable range due to the launch and on-orbit environment.</td>
<td>i) Structural analysis or environmental tests (acceleration, vibration, pressure, temperature, etc.).</td>
</tr>
<tr>
<td>g</td>
<td>Inadequate operational planning.</td>
<td>vii) Formulation of operation implementation plan.</td>
</tr>
</tbody>
</table>
4. Safety Design of CubeSat

4.12. Thruster System Safety Design and Management

- As the results of safety design activities, relationships of hazards, hazard causes, and hazard controls shall be summarized so that the progress of safety design and verification can be traceable.
- The identification and verification status of the hazard controls are confirmed by safety reviews.

Relationships between Hazards, Hazard Causes, and Hazard Controls

<table>
<thead>
<tr>
<th># Hazards</th>
<th># Hazard Causes</th>
<th># Hazard Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)-1</td>
<td>a)</td>
<td>i)</td>
</tr>
<tr>
<td>2)-1</td>
<td>b)</td>
<td>ii)</td>
</tr>
<tr>
<td>2)-2</td>
<td>a)</td>
<td>i)</td>
</tr>
<tr>
<td>3)-1</td>
<td>a) c) d) e)</td>
<td>i) iii) iv) v) vi)</td>
</tr>
<tr>
<td>3)-2</td>
<td>a)</td>
<td>i)</td>
</tr>
<tr>
<td>3)-3</td>
<td>f)</td>
<td>i)</td>
</tr>
<tr>
<td>3)-4</td>
<td>g)</td>
<td>vii)</td>
</tr>
</tbody>
</table>
4. Safety Design of CubeSat

4.12. Thruster System – Safety Design Aspects

• NASA's TOPO (Trajectory Operations and Planning Officer) team will participate in orbital operation safety assessment.

• In case the CubeSat is equipped with thruster systems, it is necessary to pay attention to the fact that there are more review processes than satellites without thruster systems, and hence it takes longer to complete the entire review process.

• The use of software to control hazards requires a CBCS (Computer Based Control System) review. Strict design reviews will be carried out from the following aspects:
 • Whether the hazard control is canceled even if the memory contents are changed due to SEU, etc.
 • Whether abnormal commands can be detected and rejected.
 • Whether appropriate exception handling being performed.

• When performing hazard control after release, it is easy to use microcomputers or logic devices, but in that case, it is necessary to demonstrate that "no matter how much they malfunction, hazard control will not be disabled."

• CBCS can be applied not only to thruster systems but also to other hazard control. Conversely, if you have a high-performance computer that supports CBCS screening, the number of hardware hazard controls can be reduced.
5. Documentation and Ground Testing

KiboCUBE Academy
5. Documentation and Ground Testing

5.1. Verification Process

- Verification processes of a satellite can start from the Breadboard Model (BBM) concept verification.
- Detailed design solution of the satellite is verified using Engineering Model (EM).
- Flight Model (FM) is manufactured based on the verified design through EM, and minimum required tests are applied to obtain qualification for the launch.
- Sometimes a mechanical test model is utilized before manufacturing of the structure of the EM.
The relationship between the safety requirements of the hazard, their controls, and verification results shall be traceable for the evaluation of the safety design.

Panel Deployment Mechanism

Hazard
- Unexpected panel deployment is classified as catastrophic hazard
- Unique Hazard #UH1

Causes
- Electrical Failure
 - UH1-Cause1
- Mechanical Failure
 - UH1-Cause2
- ... (more causes)

Controls
- 3 electrical inhibits
 - UH1-Cause1-Control1
- Redundant Wires
 - UH1-Cause2-Control1
- No Sharp Edges
 - UH1-Cause2-Control2
- Design Margin and Safety Factor
 - UH1-Cause2-Control3
- ... (more controls)

Verification Methods
- Verify electric circuit drawing.
 - UH1-Cause1-Control1-Verification1
- Mechanical verification by vibration tests.
 - UH1-Cause1-Control1-Verification2
- Verify mechanical drawing.
 - UH1-Cause2-Control1-Verification1
- Visual inspection of FM.
 - UH1-Cause2-Control1-Verification2
- ... (more methods)

Verification Results
- Electrical Circuit Drawings
- EM Vibration Test Plan
- EM Vibration Test Results
- FM Vibration Test Plan
- FM Vibration Test Results
- Mechanical Drawings
- Visual Inspection Report
- ... (more results)
Required documents to be prepared and submitted to JAXA for the deployment from the ISS is listed below.

Required Documents for ISS CubeSats

1. J-SSOD・Document List
2. J-SSOD・Satellite Information
4. J-SSOD・Assembly Drawing
5. J-SSOD・Structure Fracture Control Evaluation Form
6. J-SSOD・Assembly Procedure
7. J-SSOD・Interface Verification Record
8. J-SSOD・Fit Check Test Report
10. J-SSOD・Antenna Deployment and RF transmission Test Report
12. J-SSOD・Battery Verification Test Report
14. J-SSOD・Wire Strength Test Report

“Fit check” is one of the most important tests of a CubeSat. A CubeSat’s mechanical and electrical compatibilities are tested using a mechanical Fit Check model of the CubeSat deployment pod.

The manufacturing and integration of the mechanical system shall fulfill the mechanical requirements posed on CubeSats, such as dimension tolerance, surface accuracy, contact of mechanical switches, etc.

Not only the structural design, but also the satellite integration process, shall be planned in the way that the satellite assembly and integration process is reproducible.

It is very important that the assembly, integration and test results are carefully recorded in documents.
6. CubeSat Mission Assurance
Applying redundant design is one way to improve the system reliability. There are several types of redundant design approaches, such as cold redundancy, hot redundancy, and functional redundancy.

Due to the limited resources of CubeSats, implementing functional redundancy as much as possible is the effective manner to achieve a higher improving system reliability. Some of these functional redundancy design can be implemented even just by improving on-board software.

Example of Redundant Design Application for CubeSats

1. **Cold Redundancy**
 - Attitude Control Computer
 - Star Tracker
 - Star Tracker

2. **Hot Redundancy**
 - Attitude Control Computer
 - Star Tracker
 - Star Tracker

3. **Functional Redundancy**
 - Attitude Control Computer
 - Star Tracker
 - Sun Sensor
 - Magnetometer

 - Accurate Attitude
 - Coarse Attitude
The number of components to be implemented as the inhibits for hazard control shall be kept to as few as possible, in order to increase mission assurance.

6. CubeSat Mission Assurance

6.2. Reduction of Inhibit Components for Mission Assurance

- The number of components to be implemented as the inhibits for hazard control shall be kept to as few as possible, in order to increase mission assurance.

A. Fault Tolerant Design 1

1 Electrical Switches + 1 Mechanical Switches (Fault Tolerant Design) x 3

B. Fault Tolerant Design 2

3 Electrical Switches (Fault Tolerant Design) x 3 Mechanical Switches (Fault Tolerant Design)

C. Design for Minimum Risk + Fault Tolerant Design

1 Mechanical Switch (Design for Minimum Risk) x 3 Electrical Switches (Fault Tolerant Design)

Less Components!

Less Reliable

More Reliable
For mission assurance, planning and conducting thorough functional tests is the key to ensuring mission success in addition to the tests required for safety assurance.

Types of Tests related with Functional Evaluation:
- Electrical test
- Deployment test
- Environmental test
 - Vibration test
 - Shock test
 - Thermal vacuum test
 - Radiation test
- End-to-end test
- Hardware-in-the-loop test
- Measurements
 - Antenna pattern measurement
 - Magnetic moment measurement
- Electromagnetic compatibility test
- Launcher interface test
- etc.
For the effective mission assurance activities of CubeSats, it is important to evaluate and track satellite components’ technology readiness levels. Components with high RTL will contribute to mission assurance.

Strategic step-by-step in-orbit technology demonstrations through CubeSat projects for future missions is important.

It is desired that technological heritage is shared with the community to accelerate technology development.

Technology Readiness Level

<table>
<thead>
<tr>
<th>TRL 9</th>
<th>Actual model “flight proven” through in-orbit operations until the expected end of life in the actual operational environment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL 8</td>
<td>Actual model demonstration “flight qualified” through system PFT or AT in an operational environment on the ground.</td>
</tr>
<tr>
<td>TRL 7</td>
<td>Qualification Model demonstration through system QT in an operational environment with adequate margins on the ground.</td>
</tr>
<tr>
<td>TRL 6</td>
<td>Qualification Model validation through component QT or PFT in relevant environment on the ground.</td>
</tr>
<tr>
<td>TRL 5</td>
<td>Engineering Model validation in relevant environment.</td>
</tr>
<tr>
<td>TRL 4</td>
<td>Breadboard Model validation in laboratory environment.</td>
</tr>
<tr>
<td>TRL 3</td>
<td>Analytical and experimental critical function and/or characteristic proof-of-concept.</td>
</tr>
<tr>
<td>TRL 2</td>
<td>Technology concept and/or application formulated.</td>
</tr>
<tr>
<td>TRL 1</td>
<td>Basic principles observed and reported.</td>
</tr>
</tbody>
</table>
“Start small, go big!”

- Recently, CubeSats have become a major game-changer in the world.
- Thanks to the technological advancement of small satellites, CubeSats are no longer for education only, but for actual space development and utilization.
- Achievements obtained from smaller CubeSats can be directly applied to larger satellites for even more advanced missions.
- 1U CubeSats bring everything within your reach!
6. CubeSat Mission Assurance

6.6. UNISEC Space Engineering Education Activities

Univeristy Space Engineering Consortium

KiboCUBE Academy
JAXA and UNISEC are now working closely together on the mission assurance activities for small space systems.

Lessons Learned for Mission Success of Microsatellites (Japanese):
(JAXA Contract Report AA2130015000; doi/10.20637/00048260)

Mission Assurance Handbook for the University-built Lean Satellite:
6. CubeSat Mission Assurance

6.8. UNISEC-Global – Worldwide Space Engineering Community

- Non-Governmental Organization consisting of University Consortiums around the world.
- Established in 2013.
- Permanent observer status of UNCOPUOS (The United Nations committee on the Peaceful Uses of Outer Space) since 2017
- Aim to create a world where space science and technology is used by individuals and institutions in every country and offers opportunities across the whole structure of society for peaceful purposes and for the benefit of humankind.

21 Local Chapters with 55 POC.

Vision 2030-All

"By the end of 2030, let's create a world where university students can participate in practical space projects in all countries."
• UNISEC is offering a series of lectures for space development and utilization in Japanese. English curriculum is coming soon.
• System engineering processes of CubeSats were introduced and an overview of their design and review processes are explained. Satellite subsystems classification, satellite development models, such as BBM, EM, and FM, and related system engineering activities are described.

• Relationship of the safety and mission assurance (S&MA) activities, together with launch vehicle compatibility, were explained and safety design requirements, as well as the launch and release environment from the ISS was introduced.

• Detail of the safety design process was elaborated and CubeSat safety and design reviews, precedence in safety design approaches, relationship between satellite development models and their design/safety reviews are explained. Types (standard and unique) and severity level classification of hazards were introduced. Two major safety design methods were introduced, such as fault tolerant design and design for minimum risk.

• Examples of actual safety designs of CubeSats were introduced in terms of separation switches, electrical circuits, deployment mechanisms, wire mechanisms for deployment structures, and thruster systems.

• Verification and documentation activities related with satellite S&MA activities were explained.

• Related topics with CubeSat mission assurance were introduced, including redundant design methods, technology readiness level, strategic in-orbit demonstration approach, and space engineering education activities of UNISEC.
Thank you very much.

[Disclaimer]
The views and opinions expressed in this presentation are those of the authors and do not necessarily reflect those of the United Nations.