
KiboCUBE Academy

Introduction to CubeSat On-board Software
and Simulation Environment

The University of Tokyo

Department of Aeronautics and Astronautics

Associate Professor Dr. Satoshi Ikari

Lecture 25

This lecture is NOT specifically about KiboCUBE and covers GENERAL engineering topics of
space development and utilization for CubeSats.

The specific information and requirements for applying to KiboCUBE can be found at:
https://www.unoosa.org/oosa/en/ourwork/psa/hsti/kibocube.html

https://www.unoosa.org/oosa/en/ourwork/psa/hsti/kibocube.html

KiboCUBE Academy 2

Lecturer Introduction

Position:
2017 – 2023 Assistant Professor, Department of Aeronautics and Astronautics, The University of Tokyo
2022 – 2024 Guest Researcher, German Space Operation Center, DLR
2024 – Associate Professor, Department of Aeronautics and Astronautics, The University of Tokyo

Satoshi Ikari, Ph.D.

Research Topics:
Micro/nano-satellites, Astrodynamics, Formation Flying, GNSS, Attitude Determination and Control,
and Numerical Simulation

お顔写真

PROCYON(2014) EQUULEUS(2022) Sphere-EYE 1(2023) AOCS Module

KiboCUBE Academy 3

1. Introduction to Software for Satellite Development

2. Flight Software

3. Numerical Simulator

4. Ground Operation Software

5. Software Management

6. Examples of Software Suite for Satellite Research and Development

7. Conclusion

Contents

1. Introduction to Software
 for Satellite Development

KiboCUBE Academy 4

KiboCUBE Academy 5

 Software plays a crucial role in space development activities.

 Software used in satellite development:

 CAD, Structure and Thermal Analysis

 Electrical Power Analysis

 Astrodynamics Simulators

 Flight Software

 Ground Station Software

 Telemetry Data Analysis

 Mission Data Analysis

1. Introduction to Software for Satellite Development
1.1. Software used in Satellite Development

In Mission analysis
and Satellite Design phase

In Development, Test,
and On-orbit Operation phase

KiboCUBE Academy 6

 Software plays a crucial role in space development activities.

 In particular, Flight Software is most important for the success of satellite projects.

 “Software is responsible for 3 to 33 % of failures, with most values close to 10%.” [1]

 Examples of software failure in space projects

 Viking-1 (1975, 5 billion Y2024 USD): “Due to an error in the reprogramming of the software controlling the
battery charging cycle, the configuration of the antenna alignment was overwritten. The mission was ended
by losing the communication.” [1]

 ASTRO-H(2016, 500 million Y2024 USD): “A Software error had spun the satellite so rapidly that parts,
including the solar panels, tore off.” [1]

 Many micro/nano-satellites also have software failures leading to mission failures.

1. Introduction to Software for Satellite Development
1.2. Importance of Software in Satellite Development

[1] Christian R. Prause, and et al., “Fatal Software Failures in Spaceflight”, Encyclopedia, 4, 936-965, 2024.

KiboCUBE Academy 7

 Software testing is essential, but often gets neglected in spacecraft development.

 “Spaceflight technology is historically and also traditionally located in the area of mechanical engineering.
This means that software engineering is seen as a small auxiliary discipline. ”[1]

 Satellites are largely non-repairable. Software is typically the only element that is repairable.

 Upload tuned parameters, debugged software, and new applications to change or fixed the satellite
behaviour.

1. Introduction to Software for Satellite Development
1.2. Importance of Software in Satellite Development

[1] Christian R. Prause, and et al., “Fatal Software Failures in Spaceflight”, Encyclopedia, 4, 936-965, 2024.

KiboCUBE Academy 8

 To develop a reliable flight software, we need reliable numerical simulator for testing the
flight software.

 To correctly operate the flight software, we need a reliable ground operation software.

1. Introduction to Software for Satellite Development
1.2. Importance of Software in Satellite Development

Flight
Software

Ground Station
Software

Numerical
Simulator

Algorithm Tests
Controlling by
commands

KiboCUBE Academy 9

This lecture focuses on Flight Software, Numerical Simulator, and Ground
Station Software.

 We will learn the purpose and the overview of these software.

This lecture also covers Software Management.

 We will learn how to develop reliable software with a team.

Finally, we examine an Example of Software Suite for Satellite Research and
Development.

We will learn about Open-Source Software developed by the University of Tokyo.

1. Introduction to Software for Satellite Development
1.3. Scope of the Lecture

2. Flight Software

KiboCUBE Academy 10

KiboCUBE Academy 11

 Flight software is responsible to achieve the required functions of the satellite with the available computer
resources.

 Typical roles of flight software:

 Telemetry generation and command execution for communication with ground.

 Storing telemetry and mission data into memory.

 Storing scheduled command.

 Periodical processing of implemented applications.

 Execution of autonomous applications to maintain a healthy satellite bus system.

 Execution of autonomous applications for mission payload operation.

 Constraints of flight software

 Limited computer power and memory.

 Need to consider radiation effect (Reset, Reboot of CPUs)

2. Flight Software
2.1. Purpose of Flight Software

Example of computer resource for CubeSats[2]
[2] R. Suzumoto, and et al., “Improvement of C2A (Command-Centric Architecture) Reusability for
Multiple Types of OBCs and Development of Continuous Integration Environment for Reliability of Flight
Software”, Journal of Evolving Space Activities, 2023.

KiboCUBE Academy 12

 Command

 Command is data sent from a ground station to a satellite to control the satellite
behaviour.

 Types of commands

 Realtime command: A command executed soon after the satellite receives it.

 Scheduled command: A command to be executed at the specified time

 Scheduling execution timing of command is an essential feature of the
flight software.

 Safety and Security are important for command handling

 Ignore commands for other satellites

 Ignore commands from unexpected operators

 Ignore commands with invalid parameters

2. Flight Software
2.2. Basic features: Command and Data Handling

Command

Telemetry

KiboCUBE Academy 13

 Telemetry

 Telemetry is data sent from a satellite to ground stations.

 Types of telemetry

 Housekeeping data (HK)

 Basic status information of satellite components to monitor the health of the satellite. HK is
usually periodically and continuously sent to ground stations during contact.

 Stored data

 Information stored in the satellite memory when the satellite does not communicate with a
ground station.

 Mission data

 Data acquired from the mission instruments, such as telescopes.

 Scheduling downlink timing of telemetry data is an essential feature of the
flight software.

 Encryption is required if you want to keep your data secret.

2. Flight Software
2.2. Basic features: Command and Data Handling

Command

Telemetry

KiboCUBE Academy 14

 Sensor Data Handling

 Set sensor configurations

 Get sensor observation data

 Filtering and Attitude Determination

 Remove noise on observation data

 Estimate needed states (e.g. Kalman Filter)

 Target Attitude Calculation

 Calculate target attitude

 Attitude Control

 Calculate control torque to stabilize attitude (e.g. PID control)

 Actuator Control

 Set actuator configurations

 Get actuator information

2. Flight Software
2.3. Advanced applications: e.g., Attitude Control Algorithms

Block Diagram of Attitude Control[3]
[3]S. Ikari, and et al., “Attitude Determination and Control System for the
PROCYON Micro-Spacecraft”, Trans. JSASS, 2017

Same with other components.
 Current sensor, thermometers, and etc.

Same with other components.
 RF devices, switches, and etc.

KiboCUBE Academy 15

 Satellites are largely non-repairable. Software is typically the only
element that is repairable.

 To keep the repairability of software, an on-orbit reprogramming
feature is essential.

 Types of reprogramming

 Full reprogramming: Rewrite all program memory

 Partial reprogramming: Rewrite partial regions of program memory

 Risk of reprogramming

 Takes an amount of time for uplink

 Data loss during uplink

 Failure due to bugs in the new software

 Critical areas need to be maintained and not rewritten.

2. Flight Software
2.4. Important Features for Satellites: e.g., On-orbit reprogramming

Command

New

old

KiboCUBE Academy 16

 Limited computer power and memory

 Need to consider the radiation effect

 Reset and Reboot of CPUs is essential

 Watchdog timers or mutual monitoring to detect
hang-up of CPUs

2. Flight Software
2.5. Limitation from Hardware

Example of computer resource for CubeSats[2]

 Programming language is also limited

 Traditionally, C, C++ are used.

 Recently, Python, Rust are started to use.

3. Numerical Simulator

KiboCUBE Academy 17

KiboCUBE Academy 18

 Mission design and Analysis

 Orbit and Attitude calculation

 Power balance analysis

 Thermal analysis

 Communication Visibility Analysis

 Lifetime and Deorbit time Analysis

 Flight Software Verification

 On-board autonomous functions

 Attitude Determination and Control Algorithm

 Orbit Control Algorithm

 Operation Training

 Operation Command Validation

3. Numerical Simulator
3.1. Purpose of a Numerical Simulator

KiboCUBE Academy 19

 Understanding the space environment is essential for:

 Thermal / Power Balance / Communication Visibility Analysis

 Calculation of Orbital Disturbances

 Calculation of Sensor Observation data

 Position of planets / Rotation of planets

 Position of stars

 Geomagnetic Field

 Atmosphere

 Eclipse Calculation

 Artificial Infrastructure

 Position of GNSS satellites

 Position of Data Relay satellites

3. Numerical Simulator
3.2. Space Environment Simulation

Ref: https://physicsopenlab.org/2019/06/10/geomagnetic-field/

KiboCUBE Academy 20

 Satellite dynamics simulations are essential for
satellite position and attitude calculation

 Disturbances
 High-order geopotential

 Third body gravity

 Magnetic Disturbances

 Solar Radiation Pressure

 Air Drag

 Satellite Orbit calculation / propagation
 Analytical calculation: Kepler, SGP4

 Numerical Integration: Runge-Kutta method

 Satellite Attitude propagation
 Numerical Integration: Runge-Kutta method

3. Numerical Simulator
3.3. Satellite Dynamics Simulation

Example of calculated Disturbances

Orbit motion in ECI frame

KiboCUBE Academy 21

 Satellite components emulation is essential for

 Realistic test for satellite attitude determination and control
algorithm

 Electrical Power

 Switch State

 Power Consumption

 Thermal

 Heat generation

 Thermal Conductance

 Communication

 Telemetry and Command of the Component

 Others

 Noise on sensing data

 Noise on actuation torque

 Mounting position and coordinate

 Failure emulation

3. Numerical Simulator
3.4. Satellite Components Emulation

Example of gyro sensor output

Example of Reaction Wheel

4. Ground Operation Software

KiboCUBE Academy 22

KiboCUBE Academy 23

 Operation Planning
 Determine AOS and LOS time with satellite orbit

information.

 Orbit Determination for future operation planning.

 Ground Station Antenna Direction Control
 Elevation/Azimuth calculation from satellite orbit.

 Generate signal to control the antenna direction

 Telemetry Quick Look with GUI
 Display real-time telemetry in good GUI to quickly check

the satellite status.

 Command Sending
 Send command to a satellite.

 Data Storage
 Store telemetry and command data in a database

 Telemetry Analysis
 Offline analysis of telemetry to get mission data or to check

health monitoring of the satellite.

4. Ground Operation Software
4.1. Purpose of Ground Operation Software

CommandTelemetry
 - Quick Look
- Offline Analysis

Antenna
Drive

Satellite
Orbit

*AOS: Acquisition of Signal, LOS: Loss of Signal, GUI: Graphical User Interface

KiboCUBE Academy 24

Purpose
 Control the antenna direction

(Elevation/Azimuth) to point the satellite
direction.

Sequence
 Get satellite orbit information

 e.g. TLE from space-track

 Calculate satellite position in ECEF frame

 Calculate antenna pointing target direction
(Elevation/Azimuth)

 Control motors on ground station antenna

4. Ground Operation Software
4.2. On-ground Antenna Driving Software

CommandTelemetry
 - Quick Look
- Offline Analysis

Antenna
Drive

Satellite
Orbit

KiboCUBE Academy 25

 The GUI (Graphical User Interface) is very important to
improve operational efficiency and reduce the frequency of
operational errors.

 Command Handling GUI

 List of sending command

 File input for scheduled command list

 Command selection for emergency operation

 Telemetry Quick Look GUI

 List of received telemetry data and its value

 Time history graph, state indication with colour, and other
graphs are effective to quickly understand the satellite status

4. Ground Operation Software
4.3. Front End: Command and Telemetry Handling GUI

Example of command GUI

Example of command GUI

KiboCUBE Academy 26

4. Ground Operation Software
4.3. Front End: Command and Telemetry Handling GUI

Examples of telemetry Quick Look GUI with Grafana

KiboCUBE Academy 27

 The received telemetry data is the most
important artifact of the satellite mission and
must be kept in strict confidence.

 The telemetry data including housekeeping
data, and mission data should be stored in
storage servers.

 The transmitted command information
should also be stored on the server to verify
what kind of satellite operations were
performed.

4. Ground Operation Software
4.4. Back End: Data Delivery and Storage Servers

Example of Database Server Connection

KiboCUBE Academy 28

 When operating a large number of CubeSats simultaneously, it is essential to automate the operation.

4. Ground Operation Software
4.5. Advanced Applications: Automatic Operation

 Example of Automatic Operation
Automatic Command Generation before the
operation path

1. The target imaging point is selected by users.

2. The target attitude of the satellite to get the image is
calculated and a maneuver plan is generated.

3. Command list to realize the maneuverer and imaging
is generated.

4. The command list is validated with the numerical
simulator by checking the power generation, thermal
analysis, attitude angular velocity, and so on.

5. When the command list is feasible, the commands
send to the satellite in the uplink path.

Select Target

Generate Command List

- Change Attitude
- Power On Camera
- Take Image
- Change Attitude

Validation in simulator
Send Command

5. Software Management

KiboCUBE Academy 29

KiboCUBE Academy 30

 To develop reliable software

 To develop reusable software

Cooperative development with team
members

To realize the above requirements, the
following features are important
Readability

Modularity

Coding rules

 Peer review

 Test, test, test!

5. Software Management
5.1. Purpose of Software Management

KiboCUBE Academy 31

Coding Rules

Naming rule
 How to decide files, variables, and

functions name

 Abbreviation rule

Coding Format
 Indent style

 Length of a line

 Popular Coding Rules
 Google C++ Style Guide

 WebKit Code Style Guidelines

 Google Python Style Guide

5. Software Management
5.1. Purpose of Software Management

snake_case
UPPER_SNAKE_CASE
kebab-case
PascalCase

while (x == y)
{
 something(); somethingelse();
}

Allman style

while (x == y){
 something(); somethingelse();
}

K&R style

Vector<4> q;
Vector<4> quaternion_i2b;

Recommend to use
 formatter.

KiboCUBE Academy 32

Define the interface between functions

 To clarify the division of work

-> Modularity, Team development

 Input and Output of functions

Meaning of arguments and return

Range of arguments and return

 Return error when the value over the range

Dimension, unit, frame definition of
variables

5. Software Management
5.2. Interface Management

Function-1

Function-3

Is the angle in unit rad or degree?

Is the sun vector in the ECI frame
 or the body fixed frame?

Function-2

KiboCUBE Academy 33

 Software is easy to edit

 Software version control is essential to track who made what
changes and when.

 For effective collaboration and ensuring the stability and
consistency of code across development stages.

 Git

 A distributed version control system that enables efficient
tracking of changes.

 GitHub

 A cloud-based platform that uses Git for hosting, managing, and
collaborating on repositories

 Additional features: issue tracking, pull requests, and Actions

5. Software Management
5.3. Version Management

https://nvie.com/posts/a-successful-git-branching-model/

KiboCUBE Academy 34

 Source codes should be reviewed by other team
members before merging to the main branch.

 To ensure quality, identify bugs, and improve
maintainability

 GitHub has peer review system as Pull Request.

 Review by automatic bots (GitHub Actions)

 Check code format or run formatter.

 Build check, Unit test, Output test

 Review by team members

 Check the code is readable, naming is readable.

 Carefully check for potential bugs.

 The developer should add test result to clarify the
adding source code is correct.

5. Software Management
5.4. Peer Review

Pull Request with peer review

Please modify the function name.

Example of Peer Review in GitHub
https://nvie.com/posts/a
-successful-git-branching-
model/

KiboCUBE Academy 35

 What has not been tested does not work well !!

 Unit Test

 Verification of the functionality of individual components
or modules in isolation to ensure they work as intended.

 Any code, no matter how small, should be tested.

 Unit tests can be automatically done when someone
makes a Pull Request.

 Integration Test

 Verification of the interactions between integrated
modules or components to ensure they work together as
expected.

 It is necessary to consider what kind of testing needs to
be done on a project-by-project basis.

5. Software Management
5.5. Software Testing

Example of Unit Test

6. Examples of Software Suite
 for Satellite Research and Development

KiboCUBE Academy 36

KiboCUBE Academy 37

 ISSL (Intelligent Space Systems Laboratory) at the
University of Tokyo has released the OSS (Open-
Source Software) suite for satellite research and
development.

 Please visit GitHub: https://github.com/ut-issl

 The OSS Suite includes

 C2A (Command Centric Architecture)

 Highly Flexible Flight Software Architecture

 S2E (Spacecraft Simulation Environment)

 High Fidelity Astrodynamics Numerical Simulator

 WINGS (Web-based INterface Ground-station Software)

 Web based Ground Station Software

 S2E, C2A, and WINGS can be executed independently,
yet they seamlessly connect to enhance spacecraft
mission analysis and operational experiences.

6. Example of Software Suite for Satellite Research and Development
6.1. Overview of ISSL Open-Source Software Project

https://github.com/ut-issl

KiboCUBE Academy 38

 ISSL has been developing the C2A since 2013.

 C2A has been developed with a focus on providing high reusability and flexible on-orbit reconfiguration
capability. A major feature of C2A is its ability to describe the behaviour of the satellite by command. This
software architecture has enabled the short-term development of the software and on-orbit reconfiguration to
modify the functionality of the satellite.

 We already used the C2A for several micro/nano-satellites we developed on orbit.

 Hodoyoshi-3, 4, PROCYON, EQUULEUS, Sphere-EYE 1, ONGLAISAT and other satellites

6. Example of Software Suite for Satellite Research and Development
6.2. Flight Software: C2A (Command Centric Architecture)

Overview of C2A
[4] R. Suzumoto, S. Ikari, and et al., “Open-source Software Suite for Small Satellites: C2A, S2E, WINGS”, SSC, 2022

For more details on C2A, Please visit the
following GitHub repositories.
- c2a-core

- The core code of C2A
- https://github.com/ut-issl/c2a-core

- c2a-aobc
- A user side code of C2A to

implement attitude control
algorithm

https://github.com/ut-issl/c2a-core

KiboCUBE Academy 39

 ISSL has been developing the S2E since 2016.

 S2E has the following features to realize high-fidelity
astrodynamics simulation.

 Space Environment

 Celestial body position information with SPICE

 Rotation of the Earth and the moon

 Geomagnetic field with IGRF

 Air density with NRLMSISE-00

 GNSS satellite position

 Eclipse by the Earth

 Satellite Dynamics

 Attitude

 Propagation with 4th order Runge-Kutta

 Predefined controlled attitude

 Orbit

 Kepler motion without any disturbances

 Propagation with 4th order Runge-Kutta

 SGP4 with TLE

6. Example of Software Suite for Satellite Research and Development
6.3. Numerical Simulator: S2E (Spacecraft Simulation Environment)

Example of S2E Output
(Formation Flying Satellite Analysis)

KiboCUBE Academy 40

 ISSL has been developing the S2E since 2016.

 S2E has the following features to realize high-fidelity
astrodynamics simulation.

 Disturbance

 Geopotential (up to 360 degrees)

 Third body gravity

 Air drag force and torque (Multi-surface model)

 Solar radiation pressure force and torque (Multi-surface
model)

 Magnetic disturbance torque

 Gravity gradient torque

 Micro-vibration of RWs

 Flexible structure vibration (implementing

6. Example of Software Suite for Satellite Research and Development
6.3. Numerical Simulator: S2E (Spacecraft Simulation Environment)

Example of S2E Output
(Formation Flying Satellite Analysis)

KiboCUBE Academy 41

 ISSL has been developing the S2E since 2016.

 S2E has the following features to realize high-fidelity
astrodynamics simulation.

 Component Emulation

 Position and Coordinate definition

 Noise and delay of measure or control signals

 Telemetry and command for the components

 Power switch control

 Others

 Thermal Analysis

 Monte-Carlo simulation

 Multiple satellites simulation

 Communication with PC’s COM ports for HILS

6. Example of Software Suite for Satellite Research and Development
6.3. Numerical Simulator: S2E (Spacecraft Simulation Environment)

Example of S2E Output
(Formation Flying Satellite Analysis)

KiboCUBE Academy 42

 ISSL has been developing the WINGS since 2020.

 WINGS has been developed for use in satellite operations, ground tests, and component tests. The front-end
and back-end of WINGS are implemented separately, and the front-end calls REST APIs to connect the back-end.

 Therefore, the user interface can be extended to be more user-friendly by modifying only the front-end.
Furthermore, by calling the APIs via scripts such as Python, it is easy to perform automated testing of
components and build an automated operating system.

6. Example of Software Suite for Satellite Research and Development
6.4. Ground Operation Software: WINGS (Web-based INterface Ground-station Software)

GUI of WINGS
[4] R. Suzumoto, S. Ikari, and et al., “Open-source Software Suite for Small Satellites: C2A, S2E, WINGS”, SSC, 2022

KiboCUBE Academy 43

 The ISSL OSS suite widely covers many satellite
research and development activities, from education
to real satellite operations.

 SILS (Software In the Loop Simulation)

 C2A+S2E : The simplest testing configuration
without control from outside. The automatic
onboard algorithm like attitude control is tested.

 C2A+S2E+WINGS: Users can uplink commands to
the flight software and downlink telemetry from
the software.

 HILS (Hardware In the Loop Simulation)

 C2A and WINGS naturally work with hardware
like OBC and ground station equipment. S2E can
also work with hardware by connecting it to the
PC USB ports, and users can make a HILS system.

6. Example of Software Suite for Satellite Research and Development
6.5. Example of usage of the ISSL OSS suite in Satellite Development

KiboCUBE Academy 44

 We have developed a 1U-size AOCS module
that includes the full feature of three-axis
attitude control.

 We effectively used the OSS suite during the
AOCS module's onboard software
development and verification process.

 The customized S2E (S2E-AOBC) and C2A
(C2A-AOBC) for the AOCS module are also
published as OSS.

 The flight software C2A-AOBC was verified
with SILS and HILS configurations .

6. Example of Software Suite for Satellite Research and Development
6.5. Example of usage of the ISSL OSS suite in Satellite Development

Attitude Control with Magnetorquer
S. Ikari, and et al., "Development of Compact and Highly Capable Integrated AOCS
Module for CubeSats", Journal of Evolving Space Activities, vol. 1, ID 63, 2023.

7. Conclusion

KiboCUBE Academy 45

46KiboCUBE Academy

 Software used in satellite development was introduced. The importance of software development to improve
the success rate of satellites was explained.

 Objectives and overview of flight software, numerical simulation, and ground station software were discussed.
Key features of each software were explained.

 An overview of software management methods were introduced. The software management method is
essential to realize reliable software development with team members. It is directly connected with the success
rate of satellites.

 As examples of flight software, numerical simulation, and ground station software, ISSL OSS (Open-Source
Software) Suite was introduced. The details of the independent software was explained, and the connection
between the software was also introduced.

7. Conclusion

Thank you very much.

KiboCUBE Academy 47

[Disclaimer]

The views and opinions expressed in this presentation are those of

the authors and do not necessarily reflect those of the United Nations.

	スライド 1: Introduction to CubeSat On-board Software and Simulation Environment
	スライド 2: Lecturer Introduction
	スライド 3: Contents
	スライド 4: 1. Introduction to Software for Satellite Development
	スライド 5: 1. Introduction to Software for Satellite Development
	スライド 6: 1. Introduction to Software for Satellite Development
	スライド 7: 1. Introduction to Software for Satellite Development
	スライド 8: 1. Introduction to Software for Satellite Development
	スライド 9: 1. Introduction to Software for Satellite Development
	スライド 10: 2. Flight Software
	スライド 11: 2. Flight Software
	スライド 12: 2. Flight Software
	スライド 13: 2. Flight Software
	スライド 14: 2. Flight Software
	スライド 15: 2. Flight Software
	スライド 16: 2. Flight Software
	スライド 17: 3. Numerical Simulator
	スライド 18: 3. Numerical Simulator
	スライド 19: 3. Numerical Simulator
	スライド 20: 3. Numerical Simulator
	スライド 21: 3. Numerical Simulator
	スライド 22: 4. Ground Operation Software
	スライド 23: 4. Ground Operation Software
	スライド 24: 4. Ground Operation Software
	スライド 25: 4. Ground Operation Software
	スライド 26: 4. Ground Operation Software
	スライド 27: 4. Ground Operation Software
	スライド 28: 4. Ground Operation Software
	スライド 29: 5. Software Management
	スライド 30: 5. Software Management
	スライド 31: 5. Software Management
	スライド 32: 5. Software Management
	スライド 33: 5. Software Management
	スライド 34: 5. Software Management
	スライド 35: 5. Software Management
	スライド 36: 6. Examples of Software Suite for Satellite Research and Development
	スライド 37: 6. Example of Software Suite for Satellite Research and Development
	スライド 38: 6. Example of Software Suite for Satellite Research and Development
	スライド 39: 6. Example of Software Suite for Satellite Research and Development
	スライド 40: 6. Example of Software Suite for Satellite Research and Development
	スライド 41: 6. Example of Software Suite for Satellite Research and Development
	スライド 42: 6. Example of Software Suite for Satellite Research and Development
	スライド 43: 6. Example of Software Suite for Satellite Research and Development
	スライド 44: 6. Example of Software Suite for Satellite Research and Development
	スライド 45: 7. Conclusion
	スライド 46: 7. Conclusion
	スライド 47: Thank you very much.

