Future Space-borne observation of climate change processes

Knowledge for Tomorrow

Prof. Dr. Hansjörg Dittus German Aerospace Center (DLR)

DLR Space Research and Technology

- Space exploration
- Zero gravity research
- Earth observation
- Communication and navigation
- Space transport
- Technology of space systems

Guiding Principles – Vision

- DLR one of Europe's leading public research institutions, setting trends in its aeronautics, space, transport and energy business areas
- DLR in its space agency function, a force that shapes European space activities
- DLR the biggest space research center in Europe
- DLR an active partner in IPCC (Intergovernmental Panel on Climate Change)

The atmosphere: What's wrong?

- Conditions in the biosphere depend on the interactions of the Sun, the atmosphere, and earth's surface and their non linear feedback.
- Dramatic changes in population and anthropogenic emissions since 1800! Example: of 5 Billion people since SCIAMACHY has been proposed in 1988 - to a total of over 7 Billion now.

• The atmosphere is changing dramatically as a result of mankind.

www.DLR.de • Chart 5

Emissions Major Source of Uncertainty

Fossil Fuel

Biomass Burning

Volcanoes

Forests

Soils

Lightning

Temperature response to cumulative anthropogenic CO₂ emissions

04.06.2016

Sausen & Rapp

6

Why is Atmospheric Observation so important?

- It is impossible to understand or manage what is not measured!
- Atmospheric composition provides early warning of changes to come!
- Environmental / Climate Change requires Global Observations!
- Evidence base for testing our understanding and for policymaking!
- Conclusion: long-time data series for Atmospheric Observation are needed

Opportunities for Space Research and Technology

- The Paris Agreement sets long-term temperature goals and commits the participants to take all possible action they can to the best of their capabilities and within the realm of their responsibility to meet them.
- At Sendai it was stated that climate monitoring should be done via satellites.
- Space Research and Technology can provide support by delivering services and information needed to implement the resolutions of the Paris Agreement
 - This includes:
 - identifying possible climate protection and countermeasures by being able to supply the appropriate observation data
 - systematically interpreting the data and thus delivering the base line/status for further action/implementation steps
 - \circ providing a **data-base** for long-term interpretation
 - contributing to the establishment of an operational and internationally acceptable Global Monitoring System

DLR Conference on Climate Change 2016 (CCC 2016) Changes for Atmospheric Research

- 5 7 April 2016, Cologne, Germany
- In cooperation with the United Nations Office for Outer Space Affairs
- About 50 participants (scientists, members from space agencies and UN entities as UNOOSA, UNFCC, WMO...)
- Conference has had a clearly scientific focus on atmospheric challenges as well as on technical approaches to solve the problem

Results from CCC 2016

- Clouds, convection, circulation and carbon pose important challenges to the Earth's atmosphere.
- Stratospheric observations are still needed to monitor the **recovery of the** stratospheric ozone layer.
- Non-CO₂ climate effects, mostly short-lived climate forcers play a crucial role in aviation and surface transport related climate effects. Many of these non-CO₂ climate effects may be mitigated by technological and/or operational means.
- Space borne measurements should include a combination of passive and active GHG remote sensing such as CarbonSat/CarbonSat-Constellation and MERLIN to achieve optimum spatial coverage and minimal bias.
- The **global mean temperature** remains the single **most important variable** for **quantifying climate change**, and remains central to all discussion of adaptation.

Climate-related parameters

Experts agreed on the following parameters to be constantly monitored to achieve reliable information of the climate's status.

- 3D temperature (for directs observing climate change, for good reanalyses)
- 3D wind (for good re-analyses)
- water vapour (for good re-analyses, for determination of climate sensitivity)
- clouds (for determination of climate sensitivity)
- surface parameters (for determination of climate sensitivity)

Recommendations from CCC 2016

An integrated observation system is **necessary** for better understanding of climate signals and processes and **to secure compliance with international agreements such as those formulated at COP21.**

More national/international satellites for atmospheric monitoring are needed (optical, radar, infrared).

To make the information **available to all countries** (not only to those with access to space infrastructures) and to make sure that the data are **impartial** and free from certain political or economic interests, this observation system should be run as an **independent reference system** (spatial, timed, spectral).

A monitoring system is currently operating from the International Space Station. On ISS-follow up infrastructures (e.g. free-flyer) more efficient instruments could be implemented. Under the auspices of an international community of states, led by e.g. UNOOSA, an independent referent station could be build up.

DLR's Future Objectives in LEO

Concept: DLR & Airbus

DLR's Orbital-Hub concept with Free-Flyer consisting of external science platform and pressurized laboratory

Conclusions

- Compliance with any climate protection treaty can only be achieved by a continous monitoring of the Earth's atmosphere from space.
- We need forecasts with high degree of reliability on regular as well as extraordinary meteorological events in near real time.
- We need excellent tools and methods of analysis to support crisis managment in case of extreme meteorological events.

Short-term:

ISS could be used as monitoring plattform for atmospheric observation.

Long-term:

To achieve COP 21 goals we need intelligent new national/international satellite systems and a reliable reference base.