

Massive Collision Monitoring Activity (MCMA)

Examining Urgency and Options for Debris Remediation

June 8, 2017 UN COPUOS Vienna, Austria

Dr. Darren McKnight

International Association for the Advancement of Space Safety

in cooperation with

International Academy of Astronautics

Integrity Applications, Incorporated

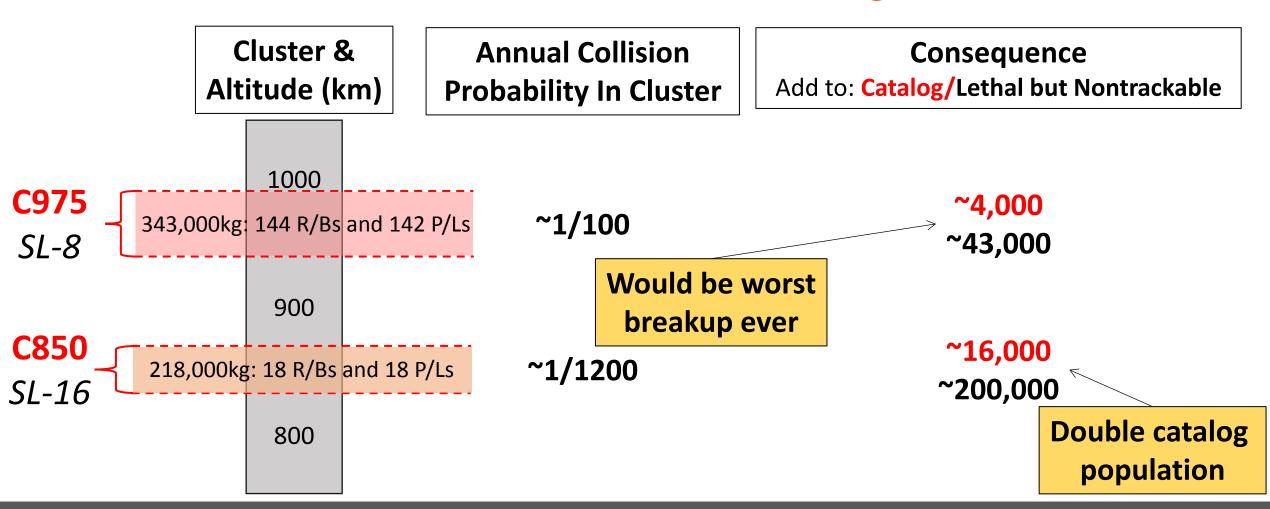
Are we solving the right problems?

Relevant to consider, but...

- Cascading effect of collisions (i.e., Kessler Syndrome) over many decades
- Constellations of smallsats
- Debris interactions are random and difficult to predict making active debris removal (ADR) seem less urgent

... should focus more on.

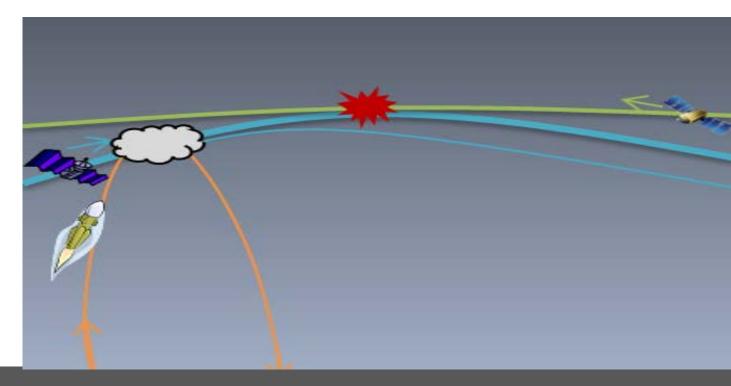
- Space flight safety how and how often are satellite operations disrupted by debris
- Clusters of massive derelicts
- Special subsets of massive derelicts encounter each other at higher rates with greater consequence – act now!



How to Proceed – The "Right" Questions!

- Focus on highest risk events
 - ✓ Probability → not random, in clusters
- Risk = Probability x Consequence ✓ Consequence → most mass will create most debris
- Determine "true" probability
 - ✓ Monitor encounter rates and compare to typical models
- Characterize cluster dynamics
 - ✓ Leverage behavior to reduce future risk from debris

Cluster Risk - Greater Than "Average"


MCMA Results – Clear warning: Do Not Ignore!

- C975 (~4,000 frags) has had 10 near misses less than 100m in last year ✓ 10% chance that two of these would have already collided
- C850 (~16,000 frags) has had 3 near misses less than 500m in last year
 ✓1% chance that two of these would have already collided
- Clusters are interacting at rates several times faster than anticipated
- Near misses and increased interactions motivate need for ADR urgency!
- Can predict conjunctions between cluster members 5-7 days in advance
 ✓ This may enable new debris remediation approaches

New Debris Remediation Options/Insights

- If we can predict the most consequential events 5 days in advance then...
 - ✓ Just-in-Time Collision Avoidance (JCA) → "Nudge" a satellite to prevent collision ○ Work cooperatively with ADR
- Just-in-Time ADR (JADR) might greatly improve return on investment of ADR
 - ✓ Each JCA/JADR mission prevents one massive collision
 - ✓ "Typical" ADR needs 35-50 removals to stop one collision

Observations and Conclusions

- There should be renewed urgency...
 - Understand the probability and outcomes of massive-on-massive collisions
 - Focus on culture of safety → cannot ignore near misses
 - Start executing ADR missions → maybe even Just-in-Time ADR
 - Refine Just-in-time Collision Avoidance (JCA) → emergency response