Chandrayaan-2 mission - India's Mission to Moon

Mr. P Kunhikrishnan Director, U R Rao Satellite Centre ISRO, Government of India

UNCOPUOS Meeting

Vienna, June 2019

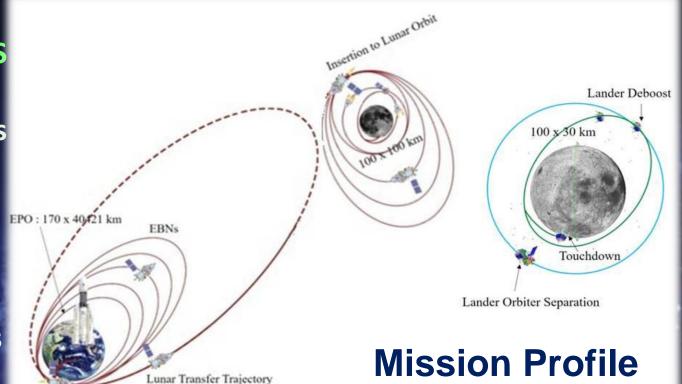
Chandrayaan-2: Objectives

- Orbiter, Lander (Vikram) and Rover (Pragyan) to study the Moon
 - □ To pursue lunar science studies
 - water identification / mapping
 - mapping of surface composition
 - explore in-situ lunar regolith properties at Southern latitudes

To develop and demonstrate key technologies for endto-end lunar mission capability, including soft-landing and roving on the lunar surface.

Chandrayaan-2 Mission Strategy

Orbiter at 100 km orbit 1 year mission life

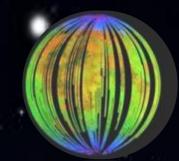

Lander (Vikram) at 70 deg S unique and unexplored 1 lunar day : ~14 Earth days

Rover (Pragyan) At vicinity of landing site 1 lunar day : ~14 Earth days

Challenges

- Lunar capture
- Lander separation from Orbiter in lunar orbit
- Soft Landing on the Moon
- Rover operations

njection to EPO


Chandrayaan-2: science payloads

Large variations in **lunar surface composition (elements as well as mineral distribution)** needs extensive mapping – essential to trace back the origin and evolution of the Moon.

Elemental mapping					Surface mapping				
Chandrayaan-2 Large Area Soft X-ray Spectrometer (CLASS) &		Identification of elements and mapping its distribution on the lunar surface from 100 km orbit.		n on the	Terrain Mapping Camera (TMC-2)		Topographic maps and DEMs.		
Solar X-Ray Monitor (XSM)				(Orbiter High Resolu	ition Camera	High-resolution		
Alpha Particle X-ray Spectrometer (APXS)		In-situ mapping around the landing site from Rover		((OHRC)		topographic maps and DEMs for		
Laser Induced Breakdown Spectroscope (LIBS)		In-situ mapping around the landing site from Rover				landing.			
				ŕ	Dual Frequency Synthetic Aperture Radar (DFSAR)		Surface roughness		
Mineralogy mapping						Lunar exos	Lunar exosphere studies		
		lroxyl, water and gnatures along with		Chandra's Atmos. Composition Explorer-2 (CHACE-2)		Composition and distribution			
(IIRS)	Mineralogy n	napping.		Dual Freque (DFRS)	ncy Radio Science		Variations in lunar ionosphere		

Chandrayaan-2: science payloads

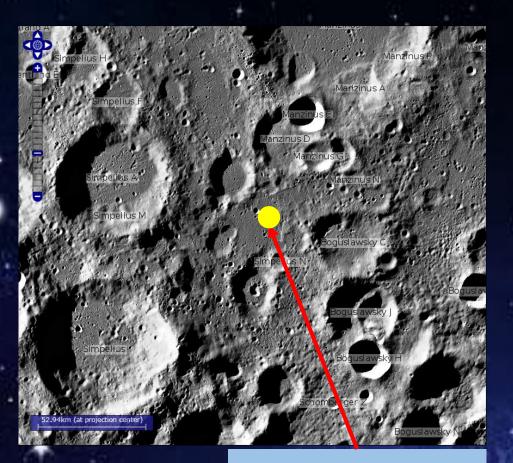
Evidence for water discovered by Chandrayaan-1, demands more focused studies on the **extent of water** on the surface, below the surface and in the tenuous lunar exosphere to address the Origin of water on Moon.

DISCOVERY OF WATER

Lunar water					
Imaging Infrared Spectrometer (IIRS)	Surface of Moon (top few microns of the lunar surface) – water on surface				
Dual Frequency Synthetic Aperture Radar (DFSAR)	Below the lunar surface (few metres deep) – search for buried water				
Chandra's Atmospheric Composition Explorer-2 (CHACE-2)	Exosphere (100 km altitude) – detects sparse water molecules above the surface				

Chandrayaan-2: Landing site science

Landing site properties and landing site characterization



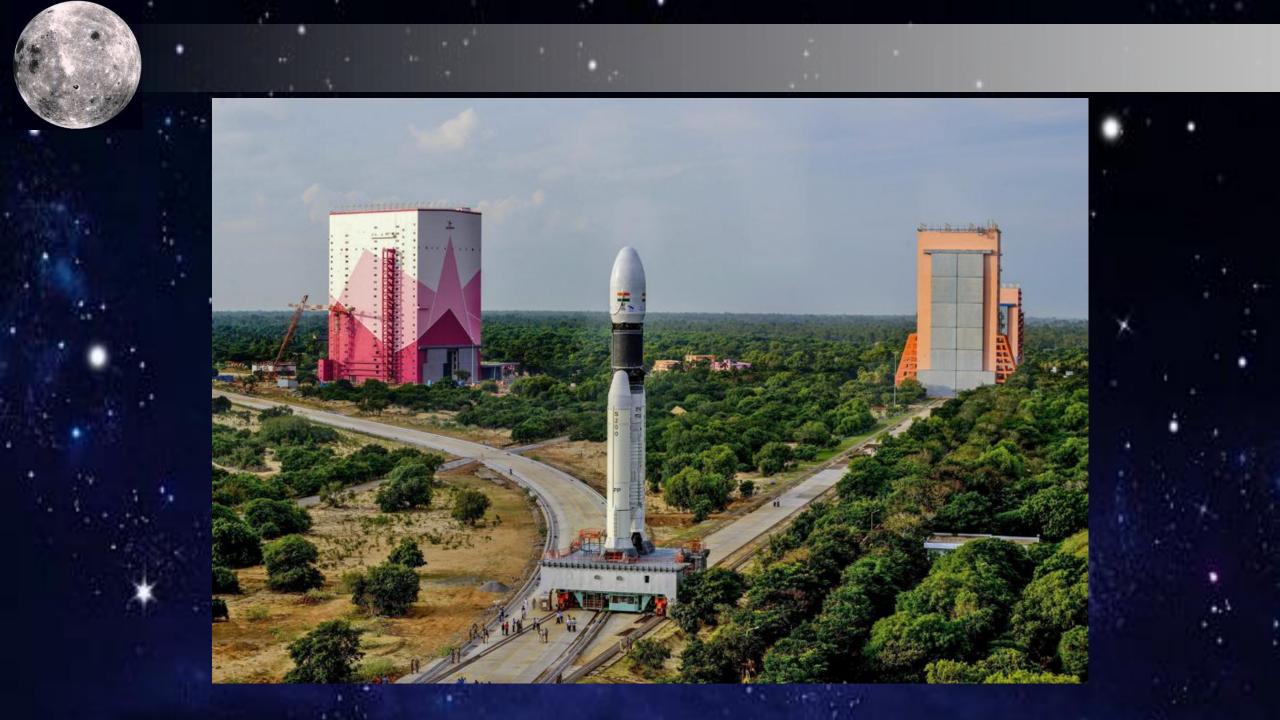
Radar image of the south pole region of the moon Courtesy Source: Internet

Landing site TMC-2 and OHRC Landing site mapping Lander and Rover Imagers Imaging the site locally **APXS and LIBS Elemental composition** Plasma density and variations Langmuir Probe (LP) Chandra's Surface Thermo-Thermal conductivity and physical Experiment (ChaSTE) temperature Instrument for Lunar Seismic Seismicity Activity (ILSA)

CHANDRAYAAN-2: LANDING SITE

इसरो डिल्व

Long; 22.78 Lat -70.90


Chandrayaan-2 Orbiter ... ready to go ٠ Topography Composition In-situ studies Search for water

Chandrayaan-2 ... getting ready to go

Chandrayaan-2 Lander ... getting ready

All modules are ready for July 15th launch by GSLV Mk III from SDSC

Thankyou for your attention...