

#### Lessons Learned for Safe and Sustainable Lunar Exploration: The Case of KPLO Operations

Moon-Jin Jeon Lead, KPLO Mission Operation Korea Aerospace Research Institute





# Contents

- Introduction to Korea Pathfinder Lunar Orbiter
- KPLO's Journey to the Moon
- Operational Challenges and Solutions
- Necessity of International Collaboration for Future Missions
- Lessons Learned from KPLO Mission







# Introduction to KPLO Spacecraft



| Item                         | Parameters                                                                                                     |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Mass                         | ≤ 678 kg                                                                                                       |  |  |
| Bus Power @ EOL              | Average 760 Watt, (2-wing, 1-axis S/A)                                                                         |  |  |
| Main Bus Voltage             | 26.4 ~32.8V unregulated                                                                                        |  |  |
| Mission Life                 | 4 Months (Transfer-orbit) + 12 Months (Mission-<br>orbit, include commissioning a month)                       |  |  |
| Lunar Transfer<br>Trajectory | Ballistic Lunar Transfer(BLT) / Week Stability<br>Boundary(WSB)                                                |  |  |
| Mission Orbit                | Altitude : 100 $\pm$ 30km<br>Mean Inclination : 90 $\pm$ 0.25deg                                               |  |  |
| Propulsion System            | Monopropellant System<br>OMT : 30N Thruster (4EA)<br>ACT : 4.45N Thruster (8EA)                                |  |  |
| Communication                | S-band(Uplink) : 0.5Kbps, 1.0Kbps<br>S-band(Downlink): 1.024Kbps, 16.384Kbps<br>X-Band(Downlink): 8.5Mbps @HGA |  |  |





#### Introduction to KPLO Mission

KPLO Magnetometer (KMAG) Kyung Hee University Magnetic strength of lunar environment

KPLO Gamma Ray Spectrometer (KCRS) Korea Institute of Geoscience and Mineral Resources Spatial distribution of major elements (Chemical Composition)

> Delay Tolerant Network Experiment Payload (DINPL) Electronics and Telecommunications Research Institute Interplanetary internet communication technique (Demonstration)



ShadowCam (SHC)



Arizona State University / NASA Investigation of permanent shadow regions

# Wide-Angle Polarimetric Camera (PolCam)



Korea Astronomy & Space Science Institute Polarimetric Image and titanium map of Moon

#### Lunar Terrain Imager (LUTI) Korea Aerospace Research Institute

Hgh-resolution lunar surface image (Korean Lunar Lander)



### KPLO's Journey to the Moon









### KPLO's Journey to the Moon







# **Operational Challenges and Solutions**

- Currently, six lunar orbiters are in operation.
- > Three orbiters (LRO, KPLO, CH2O) are in similar altitudes of low lunar orbit.
- We monitor collision possibilities daily through the MADCAP\* Report provided by NASA JPL.
- Several missions share predicted ephemeris with JPL support.
- Collision probabilities are calculated and shared based on the predicted ephemeris of the missions.
- When collision risk between two spacecrafts increases and a Red Alarm is triggered:
  - Discussions take place.
  - Mitigation measures are developed and implemented.
- Collision risk may naturally diminish over time as orbit predictions become more accurate.
- ▶ If not resolved, a collision avoidance maneuver may be performed.



\* MADCAP: Multimission Automated Deepspace Conjunction Assessment Process (by JPL)



#### Oct. 12, 2023

| Spacecraft                                  | Launch Date  | Orbit Type                            | Altitude                                        | Inclination<br>Angle |
|---------------------------------------------|--------------|---------------------------------------|-------------------------------------------------|----------------------|
| ARTEMIS PI                                  | Feb 17, 2007 | Equatorial Lunar Orbit                | Periapsis ~100 km,<br>Apoapsis ~19,000 km       | Equatorial           |
| ARTEMIS P2                                  | Feb 17, 2007 | Equatorial Lunar Orbit                | Periapsis ~100 km<br>Apoapsis ~19,000 km        | Equatorial           |
| Lunar<br>Reconnaissance<br>Orbiter (LRO)    | Jun 18, 2009 | Polar                                 | ~50 km (initially circu<br>lar, now elliptical) | 90°                  |
| Chandrayaan-2<br>Orbiter                    | Jul 22, 2019 | Polar                                 | ~100 km                                         | 90°                  |
| Korea Pathfinder<br>Lunar Orbiter<br>(KPLO) | Aug 4, 2022  | Polar                                 | ~100 km                                         | 90°                  |
| CAPSTONE                                    | Jun 28, 2022 | Near-Rectilinear Halo<br>Orbit (NRHO) | Varies                                          | 90°                  |







# Collision Alert History (Red Alarm)

- From February 19, 2023, to May 7, 2024, a total of 41 Red Alarms were triggered.
- Collision risks were mitigated through 4 orbit maintenance maneuvers and 4 collision avoidance maneuvers.







## Necessity of International Collaboration for Future Missions







# Lessons Learned from KPLO Mission

- Collision avoidance maneuvers require fuel consumption and temporary suspension of some payload mission, which may lead to differences in opinion regarding who should carry them out.
- Due to the absence of an international protocol among all agencies for resolving collision risks, we have been coordinating solutions through discussions, including email exchanges and teleconferences.
- Sometimes, we did not have the contact information of the responsible personnel, and network security issues occasionally prevented email exchanges. However, we ultimately resolved all collision risks through collaborative discussions.
- When KPLO had options, we considered how we could contribute most effectively.
- During the time SLIM was landing, urgent conjunction discussions took place, and KPLO's decision to perform collision avoidance maneuvers helped ensure SLIM's safe operations.



"Your proactive approach and dedication not only ensured the safety of both spacecraft but also exemplified the spirit of cooperation and collaboration between our institutions. We deeply appreciate your commitment to safety."

- Letter from KUNINAKA Hitoshi Director General, ISAS

#### **Thank You For Your Attention**



'23.11.13 Earth Rotation taken by LUTI (Post processed)

KPLO Korea Pathfinder Lunar Orbiter Korea's First Lunar Exploration Mission Korea Aerospace Research Institute