

Space Sustainability: The Advent of Commercial On-Orbit Servic and Immediate Need for Space Norms

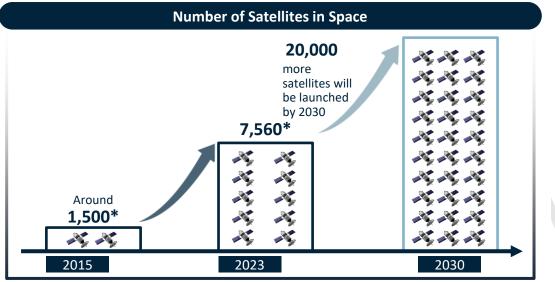
UNOOSA Legal Subcommittee - Technical Presentation

Astroscale Holdings Inc.

April 17, 2024

Space Environment and On-orbit Servicing (OOS)

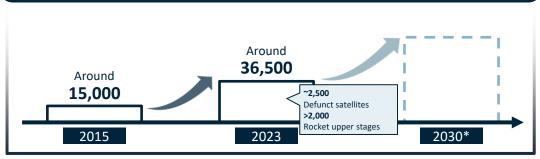
Visualization of Space Environment As of 2013 Space debrisOperating


satellites

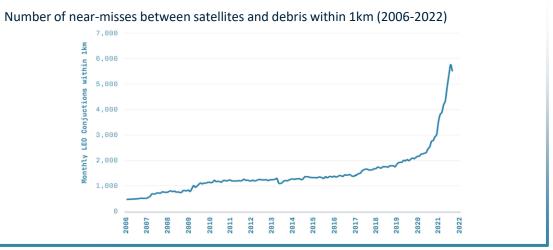
urce: Professor Toshio Hanada, Kyushu University

u University, Fukuoka 812-8581, Japan <DT> 2015/04/16 08:42:09 UTC <CS> Geocentric (3, 16)

Unsustainable Orbits are Driving up Risks



Source: UCS Satellite Database(2023), Space News(2023)"Industry report: Demand for satellites is rising but not skyrocketing", U.S. Government Accountability Office (2022)"Large Constellations of Satellites"


* Number of satellites at the end of 2015 and in May 2023

Amount of Debris in Space (>10cm)

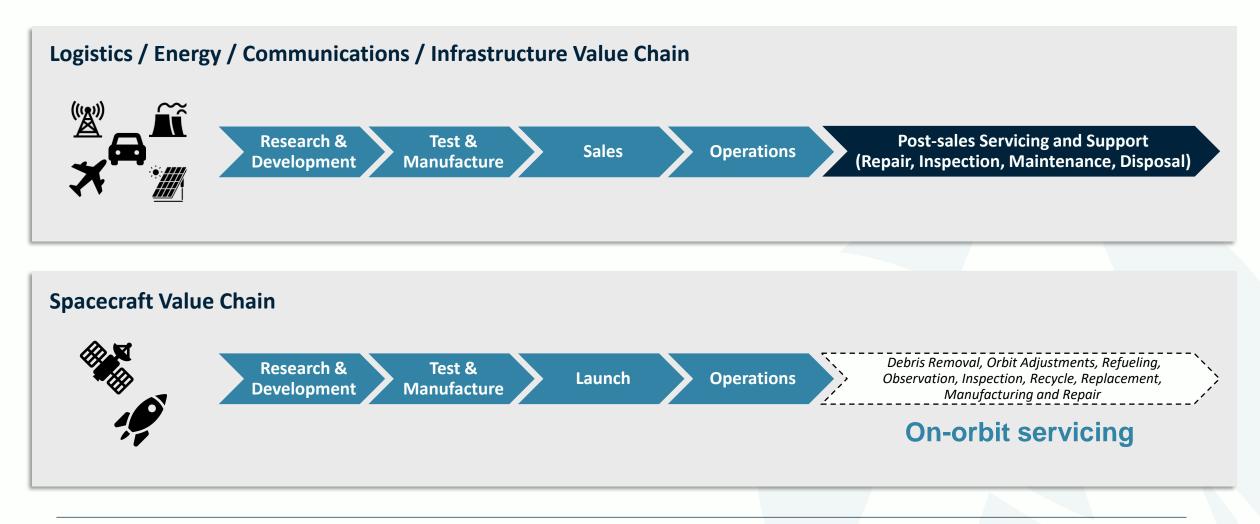
Source: European Space Agency, ESA Space Environment Report. * Dot box for 2030 is for illustration purposes only.

Conjunction Trend for Low Earth Orbit (LEO)

Source: The Center for Space Standards & Innovation at COMSPOC, with the Space Data Association, "Evaluation of LEO Conjunction Rates Using Historical Flight Safety Systems and Analytical Algorithms" (October 2021)

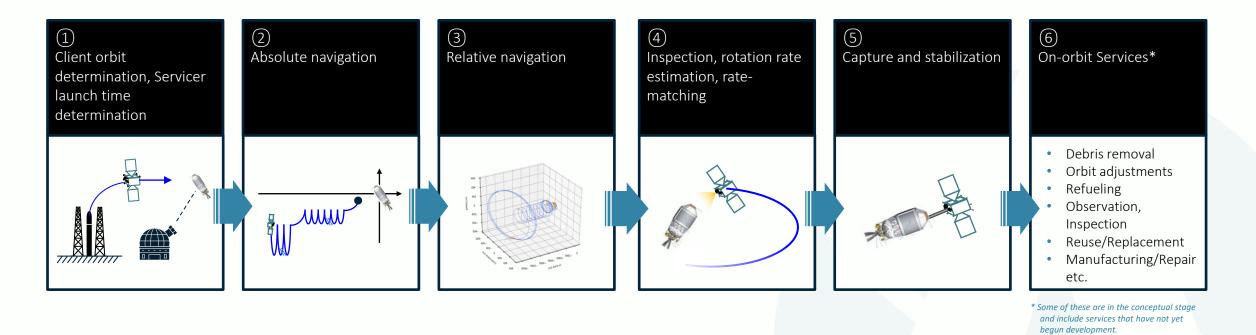
Near-misses between two large objects

7th time between Jan.2022-Mar.2024 with a miss distance of less than 20m between two intact, non-maneuverable objects (debris)*1


Increasing number of collision avoidance maneuvers by Starlink

*1: Based on information provided by LeoLabs. "A dead Russian spacecraft almost collided with a NASA satellite. The crash could have sent 7,500 bits of debris rocketing around Earth." Business Insider. *2: "Starlink close encounters decrease despite ever-growing number of satellites." SPACE.com. *3 Hugh Lewis, a professor of astronautics at the University of Southampton, assuming prior 18 months' growth rate continues

OOS is Key to Sustainable Use of Space



RPO Technologies for Unprepared Objects is Key for OOS

Rendezvous and **P**roximity **O**perations Technologies

Astroscale: Pioneering the Future of Space Sustainability

VISION

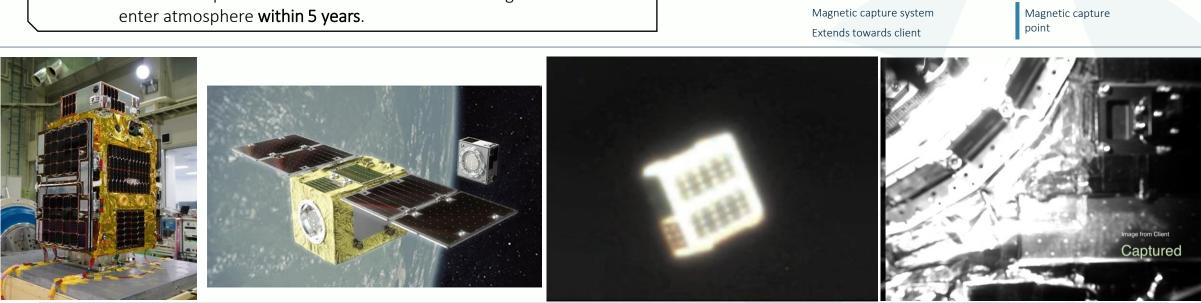
Safe and sustainable development of space for the benefit of future generations.

MISSION

Develop innovative technologies, advance business cases, and inform international policies that reduce orbital debris and support long-term, sustainable use of space.

Introduction to Astroscale

....


....

....

...

¹ Represents total amount of equity raised up to Series G, showing the amount as of March 2024.

Servicer (175 kg)

technologies, & a

mechanism

Satellite equipped with a sensor suite, RPO

ferromagnetic capture

Capture System

Mission: Successful demonstration of core RPO technologies in orbit (navigation, sensors, magnetic capture, software) and operations on the ground (fault detection, isolation & recovery, ground segment).

Status: Mission complete. Servicer and client are de-orbiting and will reenter atmosphere **within 5 years**

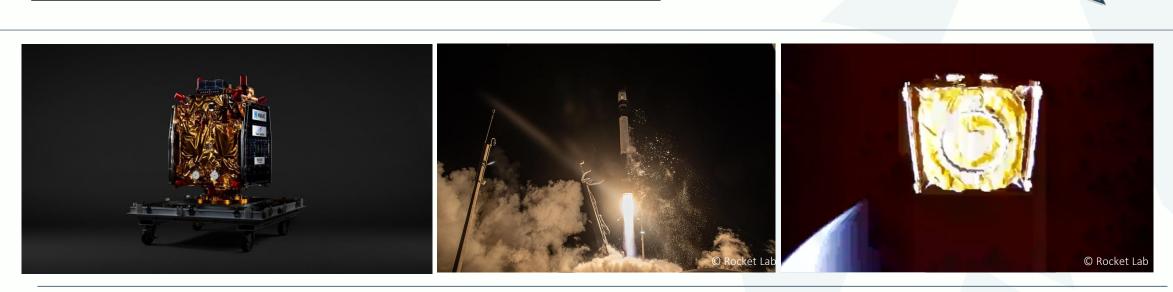
ELSA-d

Launch: March 22, 2021

ELSA-d: Proving Commercial OOS Capabilities

Client (17 kg)

pattern


Docking Plate

Replica debris/defunct

satellite equipped with

ferromagnetic docking plate & unique fiducial

Astroscale Proprietary

Mission: The first ever mission by a commercial company to rendezvous, approach and characterize an upper stage rocket body in orbit. Groundbreaking demonstration of RPO technologies for a paying customer.

Status: Successful launch and satellite check-out. Currently approaching client.

ADRAS-J: Proving Commercial OOS Capabilities

Astroscale Proprietary

ADRAS-J

February 18, 2024

Launch:

Best Practices and Standards for OOS

ADRAS-J followed "Japan's guidelines on a License to Operate a Spacecraft Performing On-Orbit Servicing" that showed best practices and standards for safe and transparent RPO operations.

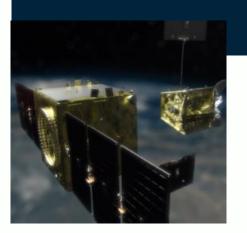
Guidelines by Cabinet Office, Japan guideline_oosgl.pdf (cao.go.jp)

(Tentative translation/For reference purpose only)	
Most notes in this document are prepared exclusively for the translated versi	on; they
do not appear in the original Japanese text.	
Guidelines on a License to Operate a Spacecraft	
Performing On-Orbit Servicing	
National Space Policy Secretariat	
Cabinet Office, Japan	
10 November 2021	

Major Requirements

- Justifiability of purposes as a lawful business conduct
- Subsystems necessary for the safety
- Operations and maneuvers plan necessary for the safety
- Transparency of the safety and justifiability

 PMissionJapan Vienna ♀ @JapanMissionVie · 2月13日
On 6 February, at the LTS workshop during #STSC, Ms Iwamoto of #Astroscale_JP presented Astroscale's efforts for on-orbit servicing, including the Active Debris Removal project, and touched on Japan's guidelines for ensuring the safe and transparent operation of such services.



A representative from Astroscale Japan presented CRD2 program and OOS guidelines at the UNCOPUOS LTS workshops in February 2024

Our Missions Cover Multiple Orbits and Serve Numerous Types of Customers



EOL

End-of-Life Services

Mission:	Prevent Future Debris
Objects:	Satellite Constellations
Client:	Commercial and Government

ADR

Active Debris Removal


Mission:	Remove Current Debris
Objects:	Defunct Satellites and Rockets
Client:	Government

LEX

Life Extension Services

Mission:	Orbit adjustment, refueling
Objects:	GEO Satellites
Client:	Commercial and Government

ISSA

In-Situ Space Situational Awareness

Mission:	Observe Orbital Environment
Objects:	Space Environment and Potential Risks
Client:	Government

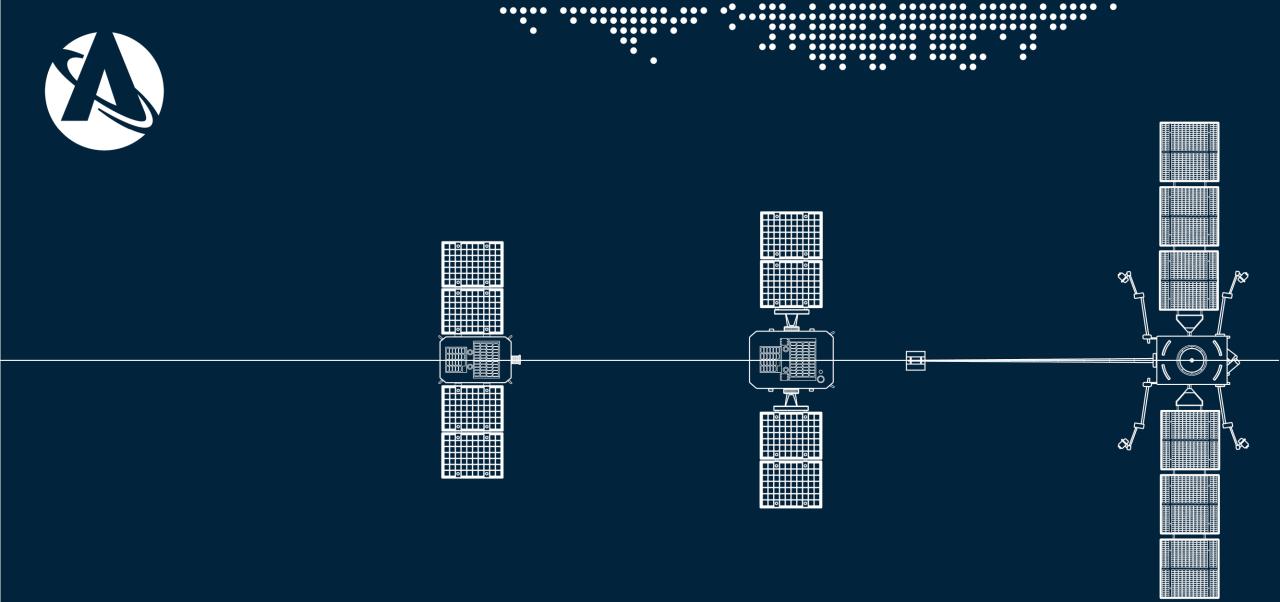
Astroscale Proprietary

Our Expectation for Global Actions for Space Sustainability

Environmental Changes

- Deteriorating space environment
- Advancing commercial OOS capabilities
- Emerging rules to regulate satellite operators and policies to promote OOS

Immediate and Further Actions


- 1. Industry, states, and global organizations must take action:
 - A) Industry:
 - Develop, demonstrate, and mature innovative OOS technologies.
 - Validate value propositions and drive discussions on best practices and standards.

B) States:

- Allocate budgets to support advanced R&D.
- Implement regulations and establish space policies and architectures leveraging OOS for a circular economy in space.

C) NGO/IGO:

- Generate consensus-based, non-binding rules on space sustainability and debris mitigation and remediation.
- 2. Regulatory and legislative action items should encompass the following:
 - Facilitating the sharing SSA (Space Situational Awareness) data to enhance SSA capabilities
 - Requiring satellite operators to deorbit all satellites at the end of their life
 - Requiring states to remove existing debris critical to space environment

visit us at www.astroscale.com

Astroscale Proprietary