Managing the Plume Effect
To Assure Sustainability
Of Lunar Activities

59th Session of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space

Feb. 8, 2022
For All Moonkind is a non-profit organization that seeks to protect and preserve human history and heritage in outer space.

Our entirely volunteer team of space lawyers and policymakers are working to develop reasonable and practical protocols that will balance development and preservation and include systems to select, manage and study relevant sites.

In so doing, we seek to promote responsible and sustainable exploration and development of space.
The LTS Guidelines define the sustainability of outer space activities as the ability to maintain the conduct of space activities indefinitely into the future in a manner that realizes the objectives of equitable access to the benefits of the exploration and use of outer space for peaceful purposes, in order to meet the needs of present generations while preserving the outer space environment for future generations.

UN Doc. A/74/20
UN Doc. A/AC.105/C.1/L.366
"I think dust is probably one of our greatest inhibitors to a nominal operation on the Moon. I think we can overcome other physiological or physical or mechanical problems except dust."

Gene Cernan

Stiff plasticized maps were taped together and fastened by clamps to patch a broken fender of the Apollo 17 Lunar Roving Vehicle (LRV).
Lunar regolith is the layer of unconsolidated rocks, pebbles, and dust that exists on the lunar bedrock. The particles are sharp and angular in nature, resulting in a much more abrasive material than their terrestrial counterparts.

Regolith is also adhesive, both mechanically and electrostatically. Mechanical adhesion occurs because of the barbed shapes of the grains of dust. Electrostatic adhesion is caused by the charging of objects by various sources, such as solar wind plasma and photoionization.
In 1967, Apollo 12 landed near Surveyor 3 – astronauts brought a piece back. Almost all of the exposed surfaces on the camera retrieved from Surveyor III were at least partially covered with a layer of lunar dust.

The camera’s exterior surface seemed to be fading and had a series of shadows that provided a direct indication that lunar dust was responsible for a major part of the observed discoloration.

The surface of Surveyor III had hundreds of pits, or micro-craters, from the impact of high-velocity soil particles.

The spacecraft had pinholes where sand grains penetrated the paint and cracks that radiated away from the pinholes.

Damage to Surveyor III
Stages of rocket exhaust ejecta beneath an Apollo Lunar Module. In smooth and streaking flow stages, ejecta is mainly in a sheet 1-3 degrees above horizontal, although some individual streaks are at higher angles. In terrain modification stage much of the ejecta is lofted into higher angles exceeding 15 degrees.

Rocks and larger particles may directly damage equipment.

Dust coating is a precursor to myriad other problems including:

- vision obscuration
- false instrument readings
- dust coating and contamination
- loss of traction
- clogging of mechanisms
- abrasion
- thermal control problems
- seal failures

Apollo Lunar Module plume impingement at a distance of 5 m above the landing surface. Image shows plume gas velocity vectors colored by velocity magnitude (blue = low, magenta = high) as well as streamlines indicating the strong upward flow direction under vacuum conditions.

Credit: NASA
Announced Missions to the Lunar Surface & Lunar Orbit as of February 2022

<table>
<thead>
<tr>
<th>Year</th>
<th>Mission Description</th>
<th>Launch Date</th>
<th>Country</th>
<th>Originator</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>LunaH-Map - Early 2022 - Lunar Orbiting CubeSat (USA)</td>
<td>Early 2022</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lunar Ice Cube - Early 2022 - Lunar Orbiting CubeSat (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lunar InfraRed imaging (LunIR) - Early 2022 - Lunar Flyby and Technology Test CubeSat (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OMOTENASHI - Early 2022 - Lunar Lander CubeSat (Japan)</td>
<td>Early 2022</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUULEUS - Early 2022 - L2 Orbit Lunar CubeSat (Japan)</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM-1 - Early 2022 - Lunar Lander (USA)</td>
<td>Early 2022</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAPSTONE - NET March 2022 - Lunar Navigation Test Orbiter (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pathfinder Lunar Orbiter - 1 August 2022 - Lunar Orbiter (South Korea)</td>
<td></td>
<td>South Korea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prime 1 - December 2022 - Lunar Lander (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peregrine Mission 1 - 2022 - Lunar Lander (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLIM - 2022 - 2023 - Lunar Lander (Japan)</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hakuto-R (Mission 1) – Late 2022 – Lunar Lander (ispace)</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rashid – Late 2022 – Lunar Lander (UAE)</td>
<td></td>
<td>UAE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peregrine – Late 2022 – Lunar Lander (Astrobotic)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nova-C – Late 2022 - Lunar Lander (Intuitive Machines)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XL-1 Lander - 2023 - Lunar Lander (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chandrayaan-3 – 2023 – Lunar Lander (India)</td>
<td></td>
<td>India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIPER - Late 2023 - Lunar South Pole Rover (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024 & beyond</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chang’e 7 - 2024 - CNSA (China) Lunar Survey Mission (China)</td>
<td></td>
<td>China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chang’e 6 - 2024 - CNSA (China) Lunar Sample Return Mission (China)</td>
<td></td>
<td>China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lunar Trailblazer - 1 February 2024 - Lunar Orbiting Small Satellite (USA)</td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chang’e 8 - TBD - CNSA (China) Lunar Technology Test (China)</td>
<td></td>
<td>China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beresheet 2 - 2024 - SpacelIL and IAI (Israel) Lunar Lander (Israel)</td>
<td></td>
<td>Israel</td>
<td></td>
</tr>
</tbody>
</table>
Model of maximum ejecta velocities as a function of lunar soil particle size.

This simulation indicates that particles up to 10 \(\mu m \) can be ejected completely off the Moon.

Black circle: circumference of the Moon. Black arrow: where the Lunar Module landed.
Dashed circle: altitude of the orbiting Command and Service Module during the Apollo missions.
Blue circles: ejecta from the landing of the Lunar Module.

Physics-based computer simulation of ejecta caused by a 40mT lunar lander.
Tiny circle: Moon.
Ellipse: Near Rectilinear Halo Orbit of the Lunar Gateway. Ejecta crosses the Gateway orbit such that Gateway will pass through the ejecta several times before it is dissipated by solar wind.
As lunar activity looks to move beyond short-duration, self-contained science missions, the potential for damage or mission failure caused by high-velocity ejecta, combined with the potential for geopolitical confrontations over these effects, suggests that a solution must be developed.
There are multiple ideas for the mitigation of the plume effect, including:

- constructing berms
- implementing safety zones and
- creating landing pads

When using berms alone, particles colliding in flight are likely to scatter over the barriers. Larger particles like rocks loft over barriers and arc down the other side, scattering the particles in lunar vacuum.

Safety zones can be defined as buffer zones in which operational safety requires consultations between Parties to avoid harmful interference and related risks. While safety zones may reduce some of the risks associated with the plume effect, when used alone, they are insufficient to dispel the visual landing hazards.
Landing pads are a kind of armor for the lunar surface in that they protect the ground from the highly destructive force of the exhaust plume.

Practically speaking, this prevents the ground from becoming a spray of high-velocity projectiles that would necessitate armor for surrounding assets.

Investing in this lunar infrastructure early is critical for cost control, asset safety and programmatic durability. These landing pads should be the result of international collaboration; established in internationally agreed locations that afford requisite access to locations as indicated by further exploration and analysis of the resources on the Moon.
For All Moonkind believes that nations engaged in – or whose nationals are engaged in – activities on the Moon have a legal obligation to mitigate the potentially devastating effects of lunar ejecta.

Beyond the responsibilities imposed by the Outer Space Treaty & the Liability Convention, the LTS Guidelines tell us that we, as the international community, must take steps towards mitigating the risks associated with the conduct of outer space activities so that present benefits can be sustained, and future opportunities realized.
Guideline A.1 provides that given the increase in space activities by both governmental and non-governmental actors from around the world, and considering that States bear international responsibility for the space activities of non-governmental entities, States should adopt, revise, or amend regulatory frameworks to ensure the effective application of relevant, generally accepted international norms, standards and practices for the safe conduct of outer space activities.

Guideline A.3 provides that States should encourage each entity conducting space activities to develop specific requirements and procedures to address the safety and reliability of outer space activities under the entity’s control and assess all risks to the long-term sustainability of outer space activities associated with the space activities conducted by the entity and take steps to mitigate such risks to the extent feasible.
We look to the Moon as a **testing ground** for deeper exploration. And yet all of our efforts could be **fatally threatened** by the existence of the lunar dust, and the **destructive impact** lunar landings can have over the entire lunar surface, and even lunar orbit. The development and establishment of **shared landing pads** may be the only way to adequately address this devastating issue.
Thank you

Michelle Hanlon // Co-Founder
Michelle@forallmoonkind.org

Bailey Cunningham // Project Manager: Space Law
Bailey@forallmoonkind.org

https://www.forallmoonkind.org