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Rationale

CLIMATE CHANGES

Rising temperatures and shifting precipitation
patterns are causing major changes on the rivers.

EFFECTS

The risk of catastrophic floods or droughts has
increased.

WATER MONITORING WITH IN SITU STATIONS

Environmental, especially fresh water, monitoring is
a key component in addressing aspects related to
water management, flood risk mitigation and
climate change assessment.
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Ground hydro-monitoring network

Sensors represent an irreplaceable resource for WATER_DEPT;_
measuring river discharge in situ, thanks to their high T
quality, reliability and consistency.
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Major limitation of the hydro-monitoring network
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Major limitation of the hydro-monitoring network

Africa
1516 stations

O not uniformly distributed in the world

O many areas are still unmonitored

Proportion of stations (%)

O the number of worldwide gauging stations has
decreased

1961
1970
1980 E
1990

o O High cost of installation and maintenance
Crochemore et al., 2020 Hydrolog Sci J, D0i:10.1080/02626667.2019.1659509

O Security and political instability issues

O Transboundary basins (lack of international
cooperation)

O Lack of qualified staff

The insufficient sampling of African
watersheds is a real issue for understanding

climate change impacts on freshwaters and
. DG |0 BET. W TR WSS W S Sed ensuring a safe, conscient and shared use of
inland waters.

Colours indicate the average percentage of data availability over 1961-2019
for all stations in the country.
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Major limitations of the hydro-monitoring network

Strict conditions related to the national authorities make
not possible the sharing of original and real time data.

African Dataset of Hydrometric Indices (ADHI)
(e.g., minimum, mean and maximum daily streamflow, baseflow
magnitude, slope of flow duration curve)

U n° stations: 1529

O original datasets: GRDC and SIEREM database

O data: minimum 10 full years of daily river discharge
data

U period: 1950 - 2018

The largest ever built database of daily discharge data in
Africa and the only source of data currently available and
updated over the African continent.

Tramblay et al., 2021 ESSD, D0i:10.5194/essd-13-1547-2021
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Satellite monitoring

Decades of available Earth observations data represent a tool complementary to the hydro-monitoring network
and recently they have demonstrated their potential, especially for data-poor regions.

Satellite data are characterized by
O Short latency
O Continuity in time

O Large coverage

Here, a comparison between the

number of satellite altimetry stations 5
(on the right) and the in situ stations ° =
9
(on the left) for the water level Q:
monitoring:
Krabbenhoft et al. 2022, Nat Sustain, Papa et al. 2022, Surv Geophys,
doi:10.1038/541893-022-00873-0 doi:10.1007/510712-022-09700-9
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How to monitor freshwater from satellite?

Direct use in the hydraulic traditional laws
or machine learning tools (local scale)
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Tarpanelli et al., 2019, Adv Space Res, doi:10.1016/].asr.2019.08.005

Camici et al., 2022, GMDD, doi:10.5194/gmd-2020-399
Tarpanelli et al., 2022, Surv Geophys, doi:10.1007/s10712-022-09744-x
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River discharge estimation by radar altimetry

Satellite radar altimetry can be used to extent the
temporal series of ground observed river discharge time
series in dismissed stations.

H is river surface height
above WGS84

Altimeter e ,
%' z is height of the river
bottom above WGS84
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River discharge estimation by radar altimetry

Trend analysis of peak over
threshold, POT, of high flow events
(80t percentile)

for two periods:

L 1970-1999
 1990-2019

Legend:

O Crosses no significant trend

O red triangles indicate sites with
significant negative trend

 blues triangles indicate sites with
significant positive trend

POT80- Trend magnitude (1970-1999) POT80- Trend magnitude (1990-2019)
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River discharge estimation by near infrared images
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As for the altimetry, the reflectance
indices in NIR band can be used to
derive river discharge for long time
periods. Currently, we are able to
reproduce more than 20 years of
satellite-derived river discharge data.
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River discharge estimation by combination of near infrared images & altimetry
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Combining multiple missions (near
infrared images approach and satellite
altimetry) along with the ground
observations, river discharge time
series become more reliable and robust oo
for hydrological applications.
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Tarpanelli et al., IEEE TGRS, 2019. Doi:10.1109/TGRS.2018.2854625
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River discharge forecasting by imaging sensors & altimetry
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River runoff and discharge from the conceptual model STREAM

Precipitation
Rainfall+Snowfall

Total discharge

Quick Flow + Slow Flow

Terrestrial Water Storage Anomalies
Soil Moisture

Camici et al., 2022, GMDD, doi:10.5194/gmd-2020-399
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River runoff and discharge from the conceptual model STREAM

Runoff and discharge

estimation for the Niger

basin from

( ESA CCI soil moisture
product

1 TRMM 3B42 precipitation
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Camici et al., 2022, GMDD, doi:10.5194/gmd-2020-399
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Conclusions and future perspectives

L Great advantage of having satellite data that are freely available, continuous over time, with a wide spatial coverage,
and independent of any political aspect to be used in data scares areas.

L The water availability has a central role in improving the climate resilience of Africa and the monitoring become one of
the essential tools to manage the water resources and assess the flood and drought risks.

L The role of satellite and in situ data, together with the modelling and the data assimilation techniques can offer a large
support on this aspect and with the future perspective of high-resolution products the reproducibility of the
implemented approaches for large basins to small regions appears increasingly feasible.

L The ongoing initiative by the scientific community on existing or future satellite missions, as well the exploration of
new techniques and the recent advances in the machine learning methods represent good opportunities:

i) toimprove the understanding of hydrological processes at various spatial and temporal scales,

i) to play a determining role in the decision-making activities and

iii) to maintain a long-term archive of hydrological data.

O The promotion and the dissemination of remote sensing is g uzisl e e L il
important for the process of developing and strengthening the idrologia@irpi.cnr.it
skills, the processes and resources that African organizations and
communities need to survive and adapt to the climate change.

@ http://hydrology.irpi.cnr.it

@ @ATarpanelli ﬁ"

@Hydrology IRPI

Thank you for your attention
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