

UN-COSPAR Symposium Space-Observation Contributions Supporting Climate Action

Sponsored by the United Nations Office for Outer Space Affairs (UNOOSA) during STSC 60 and as part of the UN Agenda for Sustainable Development

SATELLITE GEODESY AS THE SENTINEL FOR CLIMATE-INDUCED HAZARDS MONITORING C K Shum

Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA, <u>ckshum@osu.edu</u>

UN-COSPAR Symposium 14 February 2023 (15:00–17:00 CET; @16:15–16:30 CET) iTÜAKADEMI

Satellite Geodetic/Remote Sensing ESA Sentinel-2 Optical Imagery Climate & Hazards Monitoring System Machine-/Deep-Learning or AI-Aided Satellite Data Downscaling Satellite Gravimetry NASADLR GRACE

Interferometric Synthetic Aperture Radar (InSAR) JAXA ALOS-/ALOS-2 InSAR ESA Sentinel-3 InSAR

NASA ICESat-2

Multi-mission Radar Altimeter Generated Virtual Water Level Stations Over Dams, Lakes, Rivers, via Google Earth Visualization

GEODETIC CHIO

3

Google Earth

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus

Radar Altimetry Sensing of Land Subsidence: Central Valley, CA

GEODETIC

(Left) Central Valley, CA, multimíssíon radar altímeter tracks (1991-present), ground wells (green dots), and GPS sítes (red tríangles)

Detrended radar altimetry deformation compared with GPS time series at Jason-2/Envisat crossover near Corcoran, CA, 2008–2020

Updated from Yang [2020]

- Long-term altimetry observed deformation time series is sensitive to *drought* and *flood* episodes
- Satellite altimetry plausibly could be an effective solid Earth deformation tool to monitor land subsidence
- Latency for monitoring subsidence using satellite radar altimetry is estimated to be ~days to 1 week

Interferometric SAR (InSAR)

Wrapped interferogram from Sentinel-1A descending data (2016/01/16-2016/01/28) in coastal Louisiana [Credit: *J.W. Kim*].

Land deformation rate over Bangladesh coastal polders (polder 13-15, 35) estimated from ALOS-PALSAR (2008-2011) [Credit: *Y.Y. Jia*].

TCPInSAR for pavement surface monitoring: Hong Kong International Airport (2013–2016) using COSMOS X-SAR [Credit: *Lei Zhang*, Tonji Univ., 2021].

* • PSInSAR: Permanent Scatterer InSAR
• TCPInSAR: Temporal Coherent Point InSAR
• SBSInSAR: Small Baseline Subset InSAR

Ground-based GNSS-Reflectometry (Potential International Great Lakes Datum Maintenance, Sea-/Lake-Level, Wind, Wave, Sea/Lake Ice Cover/Freeboard)

• SNR technique for geocentric Lake water level observations: vertical datum monitoring

(Top Right) GPS station (HBCH, red star) at Harbor Beach, MI, Lake Huron; (Bottom) comparison between in situ water level time series and GNSS-R retrieved water level time series around the station

2020 Atlantic Hurricanes: SNR GNSS-Reflectometry

2020 Gulf of Mexico Hurricanes

NASA CYGNSS 8-CubeSat Constellation, Orbital inclinations at 35° – Spaceborne GNSS-Reflectometry

• High temporal sampled GNSS-R wind speed to study tropical cyclone evolutions

• Potential CYGNSS GNSS-R altimetry: code range (DDM only) at 4 m accuracy; phase altimetry ~decimeter accuracy, requires raw IF data, and with coherency, or at glazing angles

All-weather high spatiotemporal resolution cyclone wind speed evolutions

Gravity Recovery And Climate Experiment (GRACE), 2002–2017, and GRACE-FO Satellite Missions, 2018–

$$V_{12}^{E} = V_{2}^{E} - V_{1}^{E} = \frac{1}{2} \left| \dot{\mathbf{r}}_{12} \right|^{2} + \dot{\mathbf{r}}_{1} \cdot \dot{\mathbf{r}}_{12} + \int_{t_{0}}^{t} \frac{\partial V_{12}}{\partial t} dt - \int_{t_{0}}^{t} \left(\mathbf{f}_{2} \cdot \dot{\mathbf{r}}_{2} - \mathbf{f}_{1} \cdot \dot{\mathbf{r}}_{1} \right) dt - V_{12}^{R} - E_{12}^{0} dt$$

Guo et al. [2015], Shang et al [2015], Zeng et al. [2015], Zhang [2020]

GRACE Estimated Ganges and Brahmaputra GWS Trend, 2002–2014 (GRACE TWS Trend – Avg. Model SWS)

GRACE Groundwater: Granges-Brahmaputra-Meghna Basin

Surface water storage (soil moisture, etc) removed from GRACE TWS: averaged values predicted by 6 models: CPC, ERA-Interim, MOS, VIC, CLM, NOAH

NASA/DLR

Credit: Kun Shang [2016]

12

A devastating flood occurred in the Indian state of Maharashtra in July 22–August 2021. Thirteen <u>districts</u> were affected in western Maharashtra. Over 300 casualties due to floods and landslides.

2021 Maharashtra floods

22 July 2021 – August 2021

Heavy rainfal

209[1

Date

Cause

Missing

GRACE-FO gravimetry solutions at 11-day solution span, with daily steps, detected the genesis and evolutions of the Maharashtra flood. Animation shows multiple episodes of flood and drought

NASA

Resídual Deep Convolutional Auto-Encoder (ResDCAE): Deep-Learning Downscaled GRACE/GRACE-FO Satellite Gravimetry: North America (25 km, Daily TWSA, 2003–)

ResDCAE Deep-Learning Downscaled Satellite Gravimetry TWSA (daily, 25 km) : Category 4 Hurricane Harvey South Texas Landfall, August 25–29, 2017

ResDCAE Deep-Learning Downscaled Satellite Gravimetry TWSA (daily, 25 km) : Category 4 Hurricane Laura Louisiana Landfall, August 20–29, 2020

