Ionospheric space weather studies using high-resolution GNSS total electron content observations

T. Tsugawa, M. Nishioka, and M. Ishii

National Institute of Information and Communications Technology (NICT), Japan

NICT Space Weather Forecast Center

- Flare nowcast/forecast
- Magnetic field nowcast/forecast
- High-energy particle nowcast/forecast
- HF propagation nowcast/forecast

Web access: ~160,000/month E-mail subscribers: ~10,000

Domestic users: satellite operator, aviation office and companies, power plant companies, HF telecommunicator /broadcaster, resource survey, Univ. and research institutes, amateur HF operators

GNSS-TEC Observations

• Total electron content (TEC) can be derived by comparing the pseudorange/phase delays of the two GPS signals.

$$P_{1} = \rho + I/f_{1}^{2} + \tau_{1}^{r} + \tau_{1}^{s}$$

$$P_{2} = \rho + I/f_{2}^{2} + \tau_{2}^{r} + \tau_{2}^{s}$$

$$L_{1} = \rho - I/f_{1}^{2} + \lambda_{1}n_{1} + \epsilon_{1}^{r} + \epsilon_{1}^{s}$$

$$L_{2} = \rho - I/f_{2}^{2} + \lambda_{2}n_{2} + \epsilon_{2}^{r} + \epsilon_{2}^{s}$$

- TEC is a measure of integrated electron density in 1m² column.
- Spatial resolution of TEC map depends on the number of GNSS satellites and GNSS receivers distribution.

 $P_1 P_2$: Pseudorange $L_1 L_2$: Carrier phase I: Total electron content f_1, f_2 : Frequency ρ : True range between the GPS satellite and receiver

2D High-Resolution GPS-TEC Observations

GEONET consisting of more than 1,200 GPS stations.

TEC variation map during 2011 Tohoku earthquake [Tsugawa et al., EPS, 2011]. The red star represents the epicenter.

 Using the dense GPS network in Japan, GEONET, we have developed quasi-realtime two-dimensional maps of absolute TEC, detrended TEC with 60, 30, 15-minute window, rate of TEC change index (ROTI), and loss-of-lock on GPS signal over Japan.

TEC observations for Space Weather

 Using the dense GPS network in Japan, GEONET, we have developed quasi-realtime two-dimensional maps of absolute TEC, detrended TEC with 60, 30, 15-minute window, rate of TEC change index (ROTI), and loss-of-lock on GPS signal over Japan.

Ionospheric scintillation

- Plasma bubbles include smaller scale (~100-m scale) ionospheric irregularities.
- These ionospheric irregularities causes ionospheric scintillation, that is, amplitude and phase fluctuations on GNSS signals.

Characteristics of EPB and their effect on GNSS

Amplitude	several 10 to 100TECU depletion in TEC					
Time scale	Several 10 minutes to several hours					
Spatial structure	Steep horizontal TEC gradient					
	Narrow in zonal direction					
	Extending along the magnetic field line					
Other characteristics	Often observed mid- to low latitudes after the sunset.					
	Almost always accompanied with ionospheric irregularity					
Effect on GNSS	Differential GPS					
	Augmented GPS (due to TEC model correction error)					
	Loss-of-lock on GPS signals					

Traveling Ionospheric Disturbances (TID)

Amplitude	A few TECU					
Time scale	MS: Several 10 minutes					
	LS: Several hours					
Spatial structure	MS: Wavelengths of several 100 km					
	LS: Wavelengths of 1,000 – 3,000 km, Zonally extended wavefront					
Other characteristics	MS: Southwestward and Southeastward propagations in nighttime and daytime, respectively.					
	LS: Related with magnetic storm					
Effect on GNSS	Differential GPS					
	PPP applications of GNSS					

High-resolution GNSS-TEC observations

DRAWING-TEC project

(Dense Regional and Worldwide International GNSS-TEC observation)

- 1. Standardizing GNSS-TEC data for highresolution TEC maps.
- 2. Developing a new high-resolution TEC mapping technique using the standardized TEC data.
- 3. Sharing the standardized TEC data and the data or the information of GNSS receiver network among the international ionosphere and GNSS researcher community.

DRAWING-TEC Website

http://seg-web.nict.go.jp/GPS/DRAWING-TEC

GNSS-TEC exchange (GTEX) format (v1.0)

1.0	GTEX DATA	GN	33	GTEX VERSION / TYPE	Filenar	ne: ssssdddh.yy_TEC
RNX2GTEX V1.0	NICT, JAPA	AN		PGM / RUN BY	ssss: m	narker name
0				EXPONENT OF TECU	ddd d	a of the year
TEC values in 10^16 el/m^2 (1 TEC Unit)			COMMENT		iy of the year	
TEC Status Flag = 0 : Normal data			COMMENT	h: file s	sequence number	
	= 1 : Lac	k of observab	les (TEC=999.)	COMMENT	yv: 2-d	igit year
	= 2 : Too	large TEC (T	EC=999.)	COMMENT		5 ,
= 4 : Cycle slip (TEC discontinuity)			COMMENT			
= 5 : Cycle slip (LLI)			COMMENT			
= 6 : Beginning of arc			COMMENT	🖵 🖵 Header	Part	
TYPES OF DA	TA = R1 : Ra	w slant TEC i	ncluding bias	COMMENT		
A1 : Absolute slant TEC			COMMENT			
	R1	or Al is nec	essarv	COMMENT		
	1F : TE	C status flag	-	COMMENT		
	10 : Ob	servation dat	a used for TEC	COMMENT		
ZN : Satellite zenith angle			COMMENT			
	AZ : Sa	tellite azimu	th angle	COMMENT		
				BIAS ESTIMATION PGM		
01321310.120 01	321320.120 01	321330.120		RINEX FILE NAME 🗲		X files used to
0132				MARKER NAME	d d	
00000	TPS NETG3	3.4	EG3 Jul.02.2010	REC # / TYPE / VERS	u	enve sidnit TEC
	TRM29659.0	0 GSI	,,,	ANT # / TYPE		
-3690821.3891	2897721.3097	4305504.4426		APPROX POSITION XYZ		
42.7294	141.8640	0.0486		POSITION LAT LON ALT	<── Rec.	Position in Lat, Lon, Alt
6 L1	C1 L2 P2	s1 s2		# / TYPES OF OBSERV	<⊢ Types	s of obs. in RINEX
5 R1	1F 10 ZN	AZ I		# / TYPES OF DATA	< Types	s of data product
30.000				INTERVAL	<── Inter	val according to RINEX
2012 5	11 0 0	0.0000000	GPS	TIME OF FIRST OBS		
				END OF HEADER		
12 5 11 0 0	0.0000000 0	9G21G 9G18G1	5G28G 5G27G 8G26	<	🚽 vear r	nonth, day, hour,
-61.7242 0 L1	L2C1P2 32.45	194.42 🧲 🗕	sTEC. TEC flag.	Used RINEX	y culy i	n coc flog # of
-33.4733 0 L1	L2C1P2 9.32	14.04	obsorvation	data cat zonith		n, sec, nay, # or
-49.7988 0 L1	L2C1P2 20.39	9.03		i uata, sat. zemiti	PR	NS, PRNS
-55.8391 0 L1	L2C1P2 83.27	39.34	angle, azım	uth angle for PRN21		
-43.6837 0 L1	L2C1P2 32.21	44.21			F 1 epoc	h
-38.7060 0 L1	L2C1P2 8.31	3.34				
-44.8228 0 L1	L2C1P2 74.42	265.99				
-31.3004 0 L1	L2C1P2 23.01	343.20				
-48.7904 0 L1	L2C1P2 50.12	115.79				
12 5 11 0 0	30.0000000 0	9G21G 9G18G1	5G28G 5G27G 8G26		-	Νίστ
•]	
-						

International Telecommunication Union Radiocommunication Sector (ITU-R)

- NICT, as a delegate of Japan, first proposed "GTEX" as a format to promote international exchange and sharing of GNSS-TEC data in an input document to meetings of Working Party 3L (ionospheric propagation and radio noise), Study Group 3 (SG3, radiowave propagation) of ITU-R in June 2013 at Geneva, Switzerland.
- The GTEX format was approved as one of the standard data of transionospheric data and included in Recommendation ITU-R P.311-16 Annex 1 in 2015

http://www.itu.int/en/ITU-R/study-groups/rsg3/Pages/dtbank-form-tables.aspx

GNSS-TEC Data Sharing Based on GTEX

• Buhari et al. [2014] successfully captured plasma bubble structures using dense GNSS receiver network in Malaysia.

A new ionospheric storm scale

- Solar and geomagnetic activities have clear definitions based on physical measures.
- Ionospheric storms have no clear definition.

A new ionospheric storm scale: I-scale

TEC in the Japanese sector
during the St Patrick's day storm
Observation
median of 27 days

- Ionospheric parameters largely depend on local time, season, and latitude.
- It is necessary to investigate the ionospheric parameters statistically in order to define an universal ionospheric scale.

Basic mechanism of iono. storm

Positive Storm

- Larger F2-region plasma density than that for the quiet time
- Caused by disturbed electromagnetic force/ thermospheric wind
- Frequently occurs at the initial phase of magnetospheric storms
- Makes larger the GPS positioning error

Negative Storm

- Smaller F2-region plasma density than that for the quiet time
- Mainly caused by change in the thermospheric composition ([O]/[N2])
- Continues for one to several days frequently after positive storm
- Makes difficult the communication using higher frequency part of HE

Data set and methodology

[Data Set]

> 15-minute TEC for 18 years from 1997 to 2014 (TEC_{obs}).

[Methodology]

Ionospheric activity index (AI) is used to describe ionospheric state [e.g. Bremer et al., 2006].

- The reference value, TEC_{ref} is defined as a median of TEC_{obs} at the same local time and latitude in the past 27 days.
- Distribution of AI is investigated to determine an ionospheric storm scale.

A new ionospheric scale: I-scale

St. Patrick's event

Ionospheric storm monitoring system

http://seg-web.nict.go.jp/GPS/FC_GEONET/LAT-TEC

Ionospheric storm monitoring system

http://seg-web.nict.go.jp/GPS/FC_GEONET/LAT-TEC

Social impact: GPS positioning error

Ongoing study: Forecasting ionospheric storm using a machine learning technique

Summary

- We have developed high-resolution TEC observations using dense GNSS receiver networks. The TEC observations can be a powerful tool to monitor and research ionospheric space weather phenomena such as ionospheric strom, plasma bubble, and traveling ionospheric disturbances.
- We conducted the DRAWING-TEC project to expand observation area of high-resolution TEC maps by the international exchange and sharing of GNSS and TEC data. A new TEC format, GTEX, was approved as one of the standard data of trans-ionospheric data in the Recommendation ITU-R P.311.
- A new universal ionospheric storm, I-scale, has been established based on statistical analysis of 18-year TEC data. Ionospheric storm monitoring system has been developed based on I-scale with realtime TEC observations in Japan.

Acknowledgement

TEC and ROTI maps in this paper were derived using GNSS receiver data provided by GSI, UNAVCO, IGS, SOPAC, CORS, EPN, BKGE, OLG, IGNE, DUT, ASI, ITACYL, ESEAS, SWEPOS, NMA, BIGF, MyRTKnet, and SuGAr. The GNSS data collection and processing were performed with the NICT Science Cloud. This work was partially supported by JSPS KAKENHI Grant Number JP16H06310, JP15H05813, and JP16H06286.