GNSS Signal Structures

Tom Stansell

Stansell Consulting *Tom@Stansell.com* Bangkok, Thailand 23 January 2018

Introduction

It's a pleasure to speak with you this morning. What follows are excerpts from three separate presentations.

Regards,

Tom Stansell

Source Presentations

GNSS Signals, Spectra, and Receiver Fundamentals

GNSS Modernization and Interoperability

Tom Stansell Stansell Consulting Tom@Stansell.com

The Goal of Interoperability

Ideal interoperability allows navigation with one signal each from four or more systems with no additional receiver cost or complexity

Interoperable = Better Together than Separate

Main Benefits of Interoperability

More Satellites → Better Geometry → Improves:

• Satellite coverage

→ Navigate where could not before

Dilution of Precision

- → Accuracy is better everywhere
- → Eliminates DOP holes (with open sky)

• RAIM*

- → Integrity checked everywhere, all the time
- → Eliminates RAIM holes (with open sky)

• Phase ambiguity resolution

- → For survey and machine control applications
- Accuracy
 - → Allows higher elevation angle cutoff which reduces multipath, ionospheric, and tropospheric errors
- * Receiver Autonomous Integrity Monitoring

Spectrum of GNSS Signals

GPS Signals

GPS Signals (Cont'd)

Originally presented December 2008; Updated to current status and plans

GPS Signals Summary

	Center			
Band	Frequency	Signal	Waveform	Notes
L1 157		C/A	BPSK(1)	Open Service
	 1575 42 M山-	P(Y)	BPSK(10)	
		L1C	TMBOC	Open Service, Separate Pilot and Data Channels
		Μ	BOC(10,5)	
		P(Y)	BPSK(10)	
L2	1227.6 MHz	L2C	BPSK(1)	Open Service, Separate Pilot and Data Channels
		Μ	BOC(10,5)	
			•	
L5	1176.45 MHz	L5	BPSK(10)	Open Service, Separate Pilot and Data Channels

Galileo Signals

Galileo Signal Baseline

- E5: AltBOC(15,10) 2 x BPSK(10)
- E6: BPSK(5) and BOC_{cos}(10,5)
- E1: MBOC(6,1,1/11) and BOC_{cos}(15,2.5)
 - Latest joint EU/US decision to implement MBOC in 2007

Galileo Signals Summary

	Center					
Band	Frequency	Signals	Waveform	Notes		
⊏1	1575 A2 MHz	E1 OS	CBOC	Open Service, Separate Pilot and Data Channels		
	1575.42 101112	PRS	BOC(15,2.5)			
				-		
Ee	1078 75 MU-	CS	BPSK(5)	Commercial Service, Separate Pilot and Data Channels		
		PRS	BOC(10,5)			
E5	1191.795 MHz	E5a & E5b	AltBOC(15,10)	Open Service, Separate Pilot and Data Channels		

QZSS Signals

Note: Some signal changes are being evaluated

	Frequency	Notes
L1-C/A	1575.42MHz	Complete compatibility and interpreter bility with an interpreter of future
L1C		modernized GPS signals
L2C	1227.6MHz	Differential Correction data Integrity flag
L5	4470 45444	Ionospheric correction
	1176.45MHZ	Almanac & Health for other GNSS SVs
L1-SAIF*	1575.42MHz	Compatibility with GPS-SBAS
LEX	1278 75MHz	Experimental Signal with higher data rate message (2Kbps)
	1270.7 514112	Compatibility & interoperability with Galileo E6 signal

* L1-SAIF: L1-Submeter-class Augmentation with Integrity Function

5th International Committee on GNSS*Turin, Italy

GLONASSSignal Plans

POCKOCMOC 2014 1982 2003 2011 "Glonass" "Glonass-M" "Glonass-K1" "Glonass-K2" 3 year design life 10 year design life 10 year design life 7 year design life Clock stability - Unpressurized bus Unpressurized Clock stability 1*10⁻¹³ 5*10-13 Expected clock Expected clock stability ~5...1*10⁻¹⁴ Signals: L1SF, stability ~10...5*10⁻¹⁴ Signals: Glonass + L2SF, L1OF, L2OF (FDMA) Signals: Signals: (FDMA) Glonass-M + L3OC Glonass-M + full set of Totally launched 36 Totally launched 81 (CDMA) - test **CDMA** signals satellites satellites SAR SAR Another 12 Real operational life satellites ordered time 4.5 years **CDMA signals general structure already designed**

Future GLONASS Signal Spectrum

THE SPECTRUM OF NAVIGATION RADIO SIGNALS OF THE GLONASS SYSTEM

CHARACTERISTICS OF NAVIGATION RADIO SIGNALS OF THE GLONASS SYSTEM WITH CODE DIVISION

Range	Carrier frequency, MHz	Signal	Code length , symbols	Clock frequency, MHz	Modulation type	Transmission speed Cl, bit / s
L1	1 600,995	L10Cd L10Cp	1 023 4 092	1,023 1,023	BPSK (1) BOC (1.1)	125 pilot signal
L2	1 248.06	L2 CSI L20Cp	1 023 4 092	1,023 1,023	BPSK (1) BOC (1.1)	250 pilot signal
L3	1 202,025	L3OCd L3OCp	10 230 10 230	10.23 10.23	BPSK (10) BPSK (10)	100 pilot

BeiDou Signal Plans (From Several Presentations)

China Satellite Navigation Office

Signal Characteristics

Frequencies

- B1: 1559.052~1591.788MHz
- B2: 1166.22~1217.37MHz

B3: 1250.618~1286.423MHz

Till the year	Constellation	Signals (actual emission)
2012	5GEO+5IGSO+4MEO (Regional Service)	mainly COMPASS Phase(CP) II signals
2020	5GEO+3IGSO+27MEO (Global Service)	mainly CP III signals

Signal Characteristics

CP II: B1, B2, and B3 as below

Component	Carrier Frequency (MHz)	Chip Rate (cps)	Bandwidth (MHz)	Modulation Type	Service Type
B1(I)	1561.098	2.046	4.092	OPSK	Open
B1(Q)		2.046			Authorized
B2(I)	1207.14	2.046		OPSK	Open
B2(Q)		10.23			Authorized
B3	1268.52	10.23	24	QPSK	Authorized

CP III: B1, B2 and B3 as below

Component	Carrier Frequency (MHz)	Chip Rate (cps)	Data/Symbol Rate (bps/sps)	Modulation Type	Service Type	
B1-C _D		1.002	50/100			
B1-C _P	1575 43	1.023	No	"QBOC"	Open	
D1 A	15/5.42	2.046	50/100	$\mathbf{POC}(14, 2)$	Authorized	
BI-A		2.040	No	BOC (14, 2)		
B2a _D			25/50			
B2a _P	1101 705	10.02	No	AHDOC(15 10)		
B2b _D	1191.795	10.25	50/100	AIIBOC(15,10)	Open	
B2b _P			No		K	
B3	Allen Rolling	10.23	500bps	QPSK(10)	Authorized	
B3-A _D	1268.52	2 5575	50/100	BOC(15 2 5)	Authorizod	
B3-A _P		2.3373	No	BOC (13,2.3)	Authorized	

3

GNSS Signals, Spectra, and Receiver Fundamentals

SIMPLIFIED GPS SATELLITE BLOCK DIAGRAM

JUL

Magnavox

PN MODULATION

Simple Pseudorandom Code Generator

Code Modulation Spreads the Spectrum

SPREAD SPECTRUM POWER DENSITY

GNSS Spectra

L1, L2, & L5 are paramount, but also GLONASS, PRS, E5b, B3, & E6

GNSS L1 Spectrum

Receiver Signal Processing

CORE GPS CHIP SET

27 Years with Just 3 GPS Signals

Signal/SV	lir								
L1 C/A	\checkmark	-	Direct	civil access t	o C/A code				
L1 P(Y)	\checkmark								
L1 M			Indirec	t civil access	by codeless				
L1C			and semi-codeless means						
L2 P(Y)	\checkmark								
L2C									
L2 M									
L5									

IIR-M Satellites Added Three More

IIF Satellites Added L5

Signal/SV	IIR	IIR-M	liF	
L1 C/A	\checkmark	\checkmark	\checkmark	
L1 P(Y)	\checkmark	\checkmark	\checkmark	
L1 M		\checkmark	\checkmark	
L1C				
L2 P(Y)	\checkmark	\checkmark	\checkmark	Safety
L2C		\checkmark	\checkmark	in
L2 M		V	\checkmark	ARNS
L5			\checkmark	band
	1978 to 2005	2005	2010	

GPS III Will Add L1C

Signal/SV	IIR	IIR-M	IIF	III
L1 C/A	\checkmark	\checkmark	 ✓ 	\checkmark
L1 P(Y)	\checkmark	\checkmark	\checkmark	\checkmark
L1 M		\checkmark	\checkmark	\checkmark
L1C	Better perform	nance		\checkmark
L2 P(Y)		\checkmark	\checkmark	\checkmark
L2C			\checkmark	\checkmark
L2 M			\checkmark	\checkmark
L5			\checkmark	\checkmark
	1978 to 2005	2005	2010	2018?

Modernized Signal Structures

- The most important improvements in GNSS signal structures since1978 have been adopted for essentially every new and modernized signal
 - Including GPS, Galileo, BeiDou, and QZSS
 - Hopefully also for NAVIC and GLONASS CDMA
- The improvements are (a) to have a data-less pilot carrier and (b) to use Forward Error Control (FEC) to enhance data reception
- There are many other variations, e.g.,
 - Binary Offset Carrier (BOC) combinations, spreading code structures, FEC techniques, power split between data and pilot channels, symbol interleaving, etc.
 - Each has a purpose, e.g., spectrum separation

Signal Structure, Interoperability, and Geometry

Tom Stansell Consultant to the Aerospace Corporation Tom@Stansell.com

23 January 2018 ICG Workshop, Bangkok, Thailand

© The Aerospace Corporation 2015

Disclaimer

The views and opinions expressed herein are those of the author and do not necessarily reflect the official policy or position of The Aerospace Corporation or of any agency of the U.S. government.

> Portions of this work have been sponsored by The Aerospace Corporation

The Most Important Ingredient

- Only Navigation by Satellite can provide **excellent Geometry**
 - Continuous, worldwide, four dimensional, with excellent accuracy
 - GDOP, Geometric Dilution of Precision, and its important children:
 - PDOP, HDOP, VDOP, and TDOP
 - Although the satellite signals may be weak, the geometry is strong
- No terrestrial navigation aid delivers "the most important ingredient"
- Do users need better geometry than GPS alone can provide?
- The answer is a definite "YES" as demonstrated by:
 - Widespread use of GLONASS in products from consumer mobile phones to commercial survey and machine control products
 - In spite of the difficulty of using GLONASS FDMA with GPS CDMA
 - Plus widespread development of receivers to use <u>all</u> available GNSS
- Aircraft at altitude and ships at sea may not <u>need</u> more than GPS
 - But integrity by A-RAIM requires many more satellites
- Users subject to signal blockage or outage do need more satellites
- Thus, the second most important ingredient is signal interoperability
 - <u>Enabling</u> the best geometry by using every interoperable satellite signal

Signal Structure and Interoperability Considerations

- Interoperability is in the eye of the beholder
- For example, L1C and E1 OS have identical center frequencies and identical spectra, but almost everything else is different

	Spreading									Pilot	
	Code	Spreading		Channel	Data	Pilot			Forward	Overlay	Message
	Length	Code		with	Power	Power	Symbol		Error	Code	Frame
Signal	(chips)	Duration	Modulation	BOC(6,1)	Percent	Percent	Rate	Bit Rate	Correction	Duration	Length
L1C	10,230	10 ms	TMBOC	Pilot	25%	75%	100 SPS	50 BPS	LDPC	18 sec	18 sec
E1 OS	4,092	4 ms	CBOC	Both	50%	50%	250 SPS	125 BPS	Convolutional	100 ms	720 sec

- Receivers will handle the differences and hide them from the user
 - The user will experience better performance due to more satellites
- However, different types of receivers will take advantage of some of the signal differences between systems
 - Identical center frequency is important for high precision receivers and for bandwidth limited GNSS antennas on aircraft
 - Many receivers will use GPS L1 C/A for fast signal acquisition but the other signal structures for navigation, positioning, and timing

Predicting the Future

- If there are three global interoperable GNSS constellations in 2020
 - GPS, Galileo, and BeiDou, with a total of 72 to 90 operational satellites
- 1. Use of GLONASS FDMA will decrease for precision applications
 - The current demand for more satellites will be satisfied by interoperable CDMA signals, leaving little demand for the more difficult FDMA signals
- 2. Users will not say "this is my GNSS" or "this is my BeiDou"
 - There will be few *if any* GPS-only or BeiDou-only or Galileo-only receivers
 - Users won't know and they won't care where the signals originate
 - They will just enjoy the better performance provided by better geometry
 - And they probably will continue to call their device a "GPS" (sorry!)
- 3. Special, unique, or "orphan" signals will be little used
 - Use of GPS L2C will decline because no other GNSS provides it
 - The standard dual-frequency pair will become 1575.42 and 1176.45 MHz
 - E5b and B2b will be little used, whereas E5a and B2a will be widely used
 - A lively discussion topic!

Future Decrease in High Precision FDMA Use

A pure "time delay" Δt is characterized by a linear slope of phase versus frequency

 $\Delta \varphi / \Delta f = \Delta \varphi / (\Delta \varphi / \Delta t) = \Delta t$

- However, a bandpass filter must rapidly attenuate signals outside the bandpass region
- This introduces nonlinearities in phase versus frequency, especially at the band edges

- In high precision applications it is desirable for every signal from every satellite to experience the same nonlinearities so there are no time delay differences between signals due to receiver filtering
- This will be true if every signal has the same center frequency
- Because this is not true for GLONASS FDMA signals, very careful calibration of each channel is required for near-precision results
- This is why high precision use of GLONASS FDMA will likely decrease substantially with deployment of Galileo and BeiDou

Growth Continues and Should Accelerate

- Application growth is fueled primarily by the private sector
 - Heavily regulated products, e.g., for aviation and the military, are slow to change and generally lag in innovation (sad but true)
- Factors that encourage innovation and application growth:
 - Competition, Moore's law, opportunity, fear, and the profit motive
- What in the future will stimulate growth:
 - Much better GNSS <u>geometry</u> improves availability, continuity, integrity, and accuracy, especially in difficult environments
 - Urban canyons, real canyons, open pit mining, even aviation
 - A-RAIM will become practical and begin to displace SBAS use
 - Ambiguity resolution for Real Time Kinematic (RTK) in survey and machine control will become almost instantaneous and more reliable
 - Improved vertical accuracy will displace some laser plane requirements
- Alternate means to communicate message parameters will promote "instant navigation" for all applications (push to navigate)

