Introduction to Satellite Orbits

Dinesh Manandhar
Center for Spatial Information Science
The University of Tokyo
Contact Information: dinesh@iis.u-Tokyo.ac.jp

Basics of Satellite Orbits

- The speed of a satellite is
- Determined by the satellite's orbit
- Closely tied to the satellite's altitude.
- A satellite's orbit does not depend on its mass
- All objects with the same velocity (speed and direction) at a given point in space follow the same orbit.
- Satellites close to the Earth move faster than those at higher altitudes
- ISS moves faster than a GPS satellite when viewed from earth
- Satellites in low earth orbits (hundreds of kilometers above the Earth) move rapidly relative to the Earth, completing an orbit in 1.5 to 2 hours.

Basics of Satellite Orbits

- Satellites in higher orbits move at slower speeds than those in lower orbits
- Distance they travel in one orbit is longer.
- The time required for a satellite to orbit (the orbital period) increases with altitude.
- Only one altitude ($36,000 \mathrm{~km}$) permits satellites to orbit at the same rate at which the Earth rotates, such satellites are called geosynchronous.
- Once in orbit, a satellite does not need constant powering to remain in flight, as airplanes do. Satellites use small onboard rocket engines to maneuver in space.
- A satellite's orbit always lies in a plane that passes through the center of the Earth.
- The angle between that plane and the plane of the equator is called the orbit's inclination.

Basics of Satellite Orbits

- Ground Track: The part of the earth that lies beneath the satellite orbit
- A satellite in an orbit with inclination angle "theta" cannot pass directly over any location on Earth with latitude greater than "theta".
- A satellite launched from a site at latitude "theta" follows an orbit with inclination greater than or equal to "theta".
- From a launch site at latitude "theta" it is not possible to launch a satellite into an orbit with inclination less than "theta".
- A launch site that is not on the equator cannot place

Altitude vs. Orbital Speed vs Orbital Period

Altitude (km)	Orbital Speed (km/s)	Orbital Period (min)
200	7.8	88.3
500	7.6	94.4
1,000	7.4	104.9
5,000	5.9	201.1
10,000	4.9	347.4
20,200 (semi- synchronous)	3.9	718.3
35,800 (Geo- synchronous)	3.1	1436.2 (24 hours)

Speed needed to keep an object on orbit does not depend on its mass. Any object small or large with the same velocity will travel on the same orbit.

Basics of Satellite Orbits : Elliptical Orbits

$$
a^{2}=b^{2}+c^{2}
$$

where:
Major Axis $=2 \mathrm{a}$, Line that contains two foci
Minor Axis $=2 b$, Line perpendicular to Major Axis
Distance between the two foci $=2 \mathrm{c}$

Basics of Satellite Orbits : Elliptical Orbits

$$
a^{2}=b^{2}+c^{2}
$$

where:
Major Axis $=2 \mathrm{a}$, Line that contains two foci Minor Axis $=2 b$, Line perpendicular to Major Axis Distance between the two foci $=2 c$

Perigee: the point on an elliptical orbit when the satellite is the closest to the earth
Apogee: the point on an elliptical orbit when the satellite is the farthest to the earth
A satellite when near to the perigee moves faster
A satellite when near to apogee moves slower
The speed of a satellite depends not only on Altitude but also the shape of the orbit (length of major-axis)

