

NavIC based Timing Applications in India

Kalpesh Borsadiya

Indian Space Research Organization (ISRO)

9th December, 2019 ICG-14, Bengaluru

Timing Solution

- ☐ Timing solution finds its uses in various infrastructures of national importance like
 - ➤ Electric power distribution
 - ➤ Communication network
 - >Satellite earth stations
 - > Financial transactions time stamping
 - ➤Time Metrology
 - >Scientific research
 - ➤ Industrial Control and monitoring
- ☐ Accuracy and data format depends on application.
- ☐ Time formats: 1PPS, IRIG, NTP, PTP and NMEA.

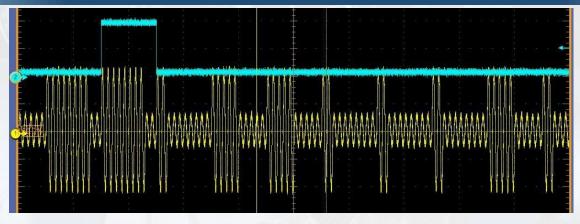
NavIC System Time

- □ NavIC System Time start epoch is 00:00 on Sunday August 22nd 1999 (midnight between August 21st and 22nd).
- At the start epoch, NavIC System Time was ahead of UTC by 13 leap seconds. (i.e. IRNSS time, August 22nd 1999, 00:00:00 corresponds to UTC time August 21st 1999, 23:59:47).
- ☐ IRNSS system time is given as 27-bit binary number composed of two parameters:
 - Week Number (10 bits) appearing in the first sub frame
 - 17bit Time of Week Count (TOWC) in all four subframes.
- ☐ TOW count value ranges from 1 to 50400 to cover one entire week.
- ☐ System Time maintained by NavIC ground segment using ensemble of AHM and Caesium clocks.
- ☐ NavIC Time is maintained within few ns of UTC(NPLI).

NavIC Timing Receiver

- ☐ Inhouse development of NavIC Timing receiver at SAC/ISRO.
 ☐ To cater to need of indigenous time scale for national infrastructure.
 ☐ Receiver is compatible with existing GPS based timing receivers.
- ☐ Dual frequency NavIC processing: better accuracy.
- ☐ Introduction in phased manner.
- ☐ Enabling industry to introduce NavIC system time in their Timing products.

NavIC Timing Receiver



- ☐Tri-band receiver with L5 & S signals of NavIC and L1 signals of GPS C/A and GAGAN.
- ☐ Time solution is obtained from NavIC Dual Frequency (L5+S) processing.
- □Outputs: IRIG, Disciplined 10 MHz and 1PPS signals.
- ☐ Configurable IRIG Time Code formats -A/B/G XXX
- \Box 1- σ timing accuracy of 15 ns.
- \square 10 MHz output stability is of the order of 10⁻¹² when locked to NavIC system time.

NavIC Timing Receiver

IRIG-B120 Output Waveform aligned to 1 PPS signal

Receiver Timing output to Standard IRIG B120 Time Code Reader

NavIC Timing Receiver in Powergrid

☐ Currently all stations are using Phase Measurement Unit (PMU),
which are synchronised across the grid using GPS receiver timing
output.
☐ As a pilot testing, NavIC Timing Receivers are installed at five power grid sites geographically spread across India.
☐ Receivers are used for time stamping of power grid phasor measurements for Power Grid control, measurements and monitoring applications.
☐ IRIG-BXXX Time Code format interface with PMU.
☐ Each site has different make and interface of PMU.

NavIC Timing Receiver in Powergrid

NavIC Timing Receiver in Powergrid

Low Cost Timing Receiver

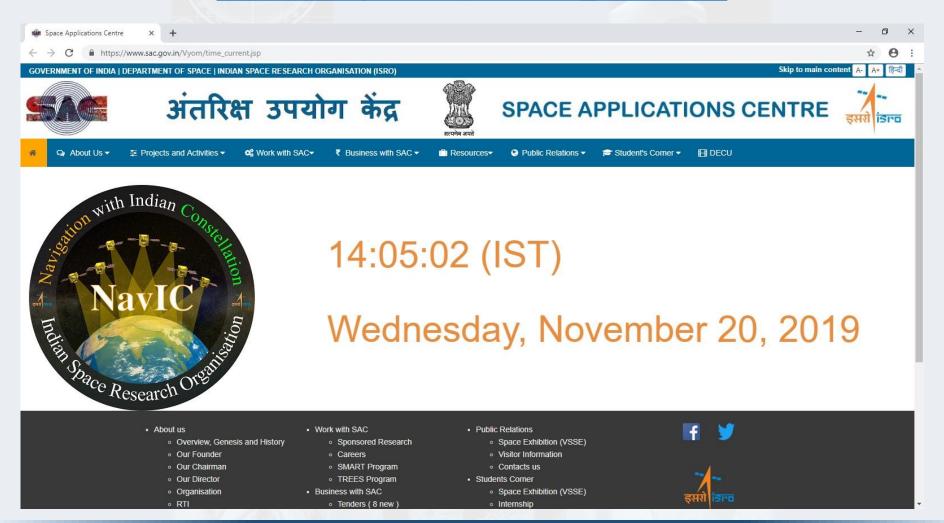
- Small size, Low cost and Low Power Timing receiver using NavIC receiver module.
- Configurable IRIG Time Code formats
 A/B/G XXX.
- 1PPS disciplined 10MHz output.

Receiver Timing output to standard IRIG B120 Time Code Reader

NavIC NTP Server

- □ NTP server with NavIC Time reference established at SAC/ISRO, Ahmedabad
- ☐ Synchronization of the computers of Intranet.
- ☐ Time server for Centre for Railway Information System (CRIS) over Internet.
- \Box This is in operation as 24x7 service.

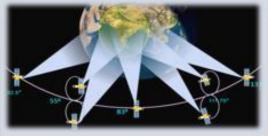
In house developed NTP server


NTP server Implementation on Raspberry PI

NavIC Time on Webpage

https://sac.gov.in/Vyom/time_current.jsp


NavIC Clock



- ☐ Time display at public establishments.
- ☐ Accurate and stable clock.

