

Development of NavIC Payload Signal Integrity & Coherency Test Receiver: Configurable for all GNSS Modulations

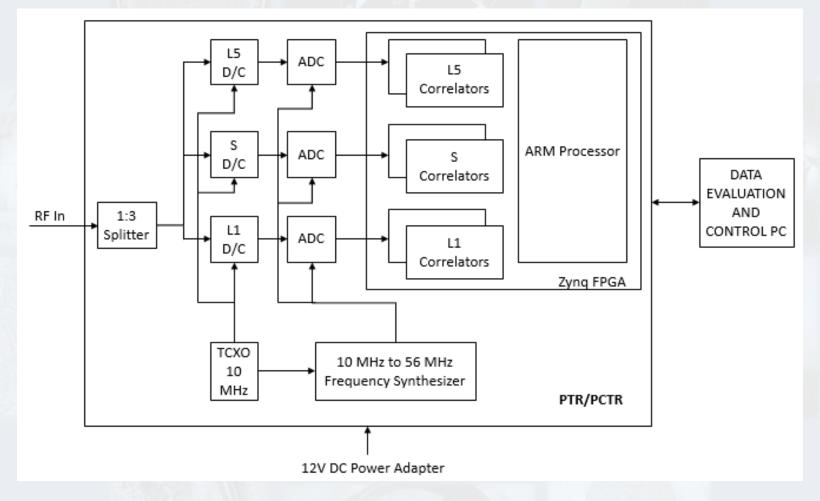
Rakesh Kumar Bijarniya Rohan S Urdhwareshe Ankesh Garg

Navigation Receiver Division Space Applications Centre (SAC/ISRO) Ahmedabad

Overview

- Navigation signal data integrity and code-carrier phase coherency between various signal components are of paramount importance for the efficient performance of the satellite navigation system.
- Special Class of Configurable Receiver is developed to evaluate data integrity and coherency parameters for the checkout of the NavIC payloads and satellites.
- This receiver is also used during In-Orbit Testing of the satellite as well as in Signal Monitoring Stations for NavIC.
- The receiver firmware is also configurable for the processing of various other open GNSS signals with variety of modulation schemes and data formats.

Salient Features



S. No.	Parameter	Specifications	
1	Frequency Band	L5 (1176.45 MHz), L1 (1575.42 MHz), S (2492.028 MHz)	
3	RF Bandwidth	24 MHz	
4	Number of channels	26 Channels	
5	Signal reception Capability	All IRNSS Signals in L1, L5 and S Band Configurable for open GNSS L1 Signals	
6	Supported Modulation Schemes	BPSK (m) BOC (m,n) Multiplexed BOC (SBOC, CBOC etc.)	
7	Output Data update rate	1 Hz	
8	Output Data	Code Phase, Carrier Phase, Estimated Received signal Strength, Navigation Message after FEC Decoding	
9	Code and Carrier Phase measurement precision	Within 10% of theoretical limits	
10	Coherency Measurements (Inter and Intra Frequency Band)	Code-Code Coherency: 4 mm (13 ps) Code-Carrier Coherency: 3 mm (10 ps) Carrier-Carrier Coherency: 1 mm (3.33 ps)	

Architecture

Architecture of Payload Coherency Test Receiver

Universal Correlator

Sub-carrier and Code

Rate and Phase Feedback

Carrier Rate and

Phase

Feedback

Discriminators & Loop Filters

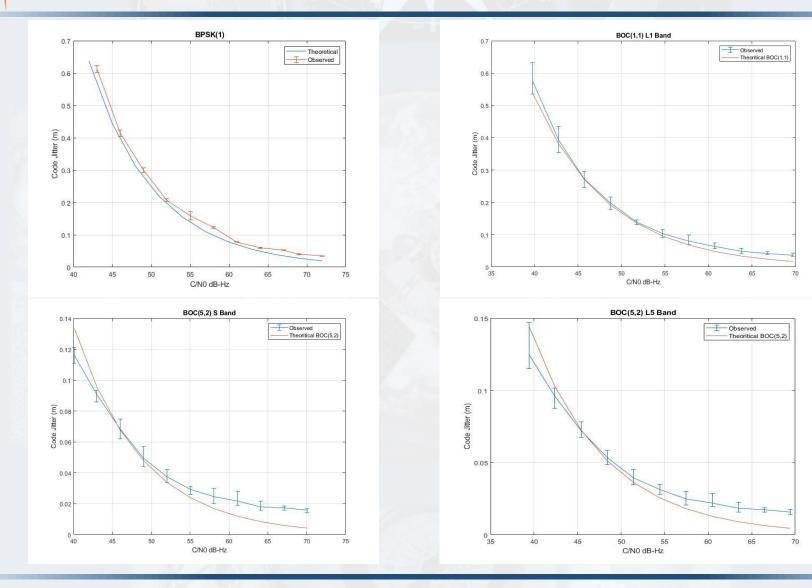
tion	Signal Supported	Modulation		1
	L5	BPSK(1), BOC(5,2)		Sub-carrier and
	S	BPSK(1), BOC(5,2)		spreading Codes Generation
	L1C	SBOC		E,P,L Cod
PS	L1 C/A	BPSK(1)		↓ Data 8
	L1C	ТМВОС		Correlator
	L5	QPSK(10)		
LONASS	L1OC	BPSK(1), BOC(1,1)		I,Q Carrier
alileo	E1OS	CBOC(6,1,1/11)		Generation
	E5a,E5b	QPSK(10)		

इसरो डिल्व

• Receiver Self Error Due To Thermal Noise

$$\sigma_{\rm nelp}^{2} = \frac{B_{L}(1 - 0.25B_{L}T)\int_{-\beta/2}^{\beta/2} G_{s}(f)\sin^{2}(\pi f \Delta)df}{\sum_{N_{0}}^{\beta/2} \left[2\pi \int_{-\beta/2}^{\beta/2} fG_{s}(f)\sin(\pi f \Delta)df\right]^{2}} \left[1 + \frac{\int_{-\beta/2}^{\beta/2} G_{s}(f)\cos^{2}(\pi f \Delta)df}{T\sum_{N_{0}}^{\beta/2} G_{s}(f)\cos(\pi f \Delta)df}\right]^{2}$$

Parameter	DLL	SLL	PLL
Loop Filter Bandwidth	1	1	10
Chip Spacing	0.18/0.14	0.18/0.14	-


Quantization in Frequency Tracking

 $Quantization Step = \frac{Sampling \, Frequency \, \times \, Loop \, Update \, Period}{2^{NCO \, Width} \, \times \, Measurement \, Inst. \, Period}$

Tracking Jitter Performance

Code-Code Coherency

 Fluctuations in the difference between code phase measurements of two signals over time is known as code-code coherency.

Methodology:

Subtraction of two code-phase observables

$$\varepsilon_k^{i,j} = C_k^i - C_k^j$$

Moving Average of N-samples

$$\overline{\varepsilon} = \frac{1}{N} \sum_{k=1}^{N} \varepsilon_k^{i,j}$$

Variance of Moving Average

$$\sigma_{\overline{\varepsilon}}^2 = \frac{\sigma_{\varepsilon}^2}{N} = \frac{2\sigma_C^2}{N}$$

- Choose N to meet the accuracy requirements.
- Similar Method can be extended for Carrier-Carrier Measurements.

Code-Carrier Coherency

• Fluctuations in the difference between code phase and carrier phase measurements of single signals over time is known as code-carrier coherency.

Methodology:

Subtraction of two code and carrier phase observables

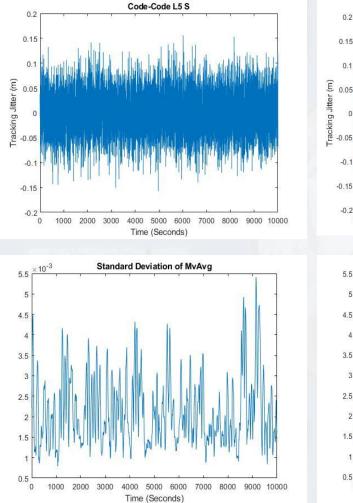
$$\varepsilon_k^{i,j} = C_k^i - Car_k^j$$

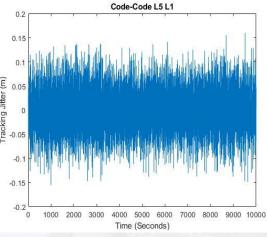
Moving Average of N-samples

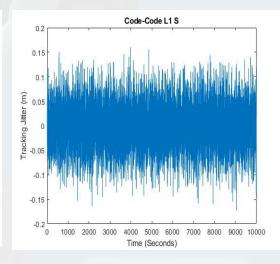
$$\overline{\varepsilon} = \frac{1}{N} \sum_{k=1}^{N} \varepsilon_k^{i,j}$$

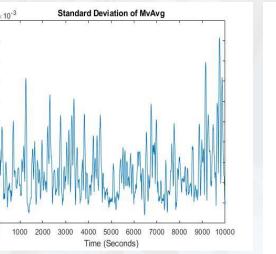
Variance of Moving Average

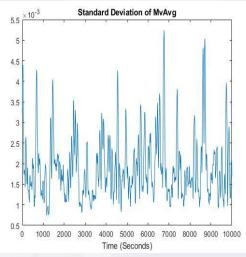
$$\sigma_{\overline{\varepsilon}}^2 = \frac{\sigma_{\varepsilon}^2}{N} = \frac{\sigma_C^2 + \sigma_{Car}^2}{N} \cong \frac{\sigma_C^2}{N}$$

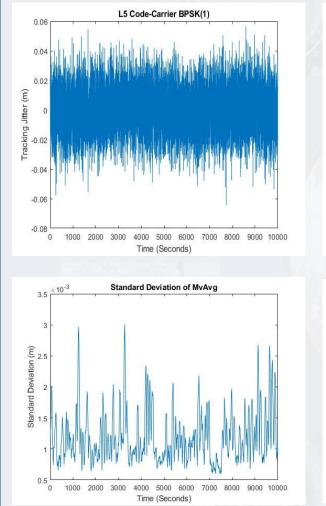

As $\sigma_c^2 \ll \sigma_{Car}^2$

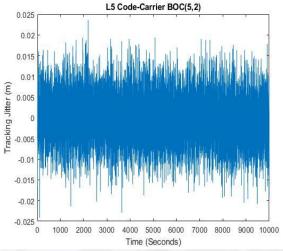

• Choose N to meet the accuracy requirements.

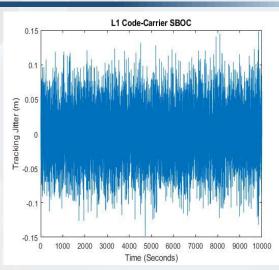


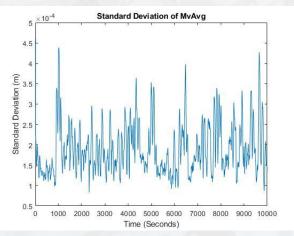

Results

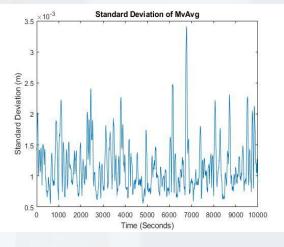


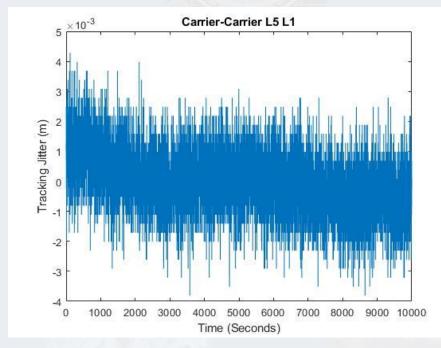

Code-Code Coherency Raw and Standard Deviation

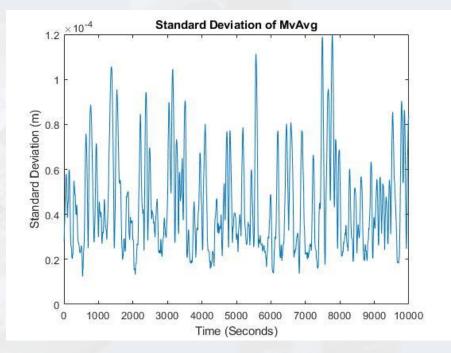

0










Code-Carrier Coherency Raw and Standard Deviation

--इसरो iडro

Results

Carrier-Carrier Raw and Standard Deviation

10/1/2021