

Novel Modulation, Coding and Soft decoding algorithms for NavIC L1 Receivers

Name(s):Dr Deepak Mishra Centre(s)/ISRO: Space Applications Centre (SAC),ISRO,INDIA

Abstract

- Synthesized binary offset carrier (SBOC) modulation scheme and Quasi cyclic LDPC code are proposed for future IRNSS L1 civilian signal. SBOC modulation contains the data signal and pilot signal. Both data and pilot signals contains the BOC(1,1) and BOC(6,1) components. A LDPC decoder required a log likelihood ratio (LLR) based inputs from demodulator of user receiver to achieve maximum performance.
- In this presentation a novel log likelihood ratio (LLR) based interface algorithm is proposed for efficient implementation between SBOC demodulator and LDPC decoder in order to achieve maximum coding gain. The classical interface block diagram of any modulator and demodulator with LDPC Encoder and decoder is shown in figure 1.

Figure 1 : LDPC Encoder and Decoder interface with modulator and demodulator

Synthesized BOC (SBOC) Generation Method

- α , β , γ , η are optimized to get constant envelope and meet PSD requirements.
 - Constraints: $\alpha^2 + \beta^2 + \gamma^2 + \eta^2 = 1$, $\alpha^2 + \gamma^2 = 10/11$, $\beta^2 + \eta^2 = 1/11$
 - Optimum Power Sharing: $\alpha^2 = 6/11$, $\beta^2 = 4/110$, $\gamma^2 = 4/11$, $\eta^2 = 6/110$

Synthesized BOC (SBOC) Generation Method

$$SBOC: S(t) = \left[\propto S_{BOC(1,1)p}(t) - \beta S_{BOC(6,1)p}(t) \right] + j[\gamma S_{BOC(1,1)d}(t) + \eta S_{BOC(6,1)d}(t)]$$

Table 1: Look up table based SBOC Modulation

Pilot	Pilot	DATA	I	Q
BOC(1,1)	BOC(6,1)	BOC(1,1)		
-1	-1	-1	-0.547856428	-0.836572372
-1	-1	1	-0.547856428	0.836572372
-1	1	-1	-0.929241464	-0.369473006
-1	1	1	-0.929241464	0.369473006
1	-1	-1	0.929241464	-0.369473006
1	-1	1	0.929241464	0.369473006
1	1	-1	0.547856428	-0.836572372
1	1	1	0.547856428	0.836572372

a bcd	MODULATION	
1000	SBOC	
1001	PILOT	
1010	DATA	
1011	BOC11 PILOT	
1100	BOC61 PILOT	
1101	BOC11 DATA	
1110	BOC61 DATA	
1111	PLAIN CARRIER	

Synthesized BOC (SBOC) Generation Method

Custom IQ - Keysight 89600 VSA Software - Press the Mode key to switch applications

2/11/2020 4:58:38 PM

A: Ch1 CustomIQ Meas Time - ×	D: Ch1 CustomIQ Syms/Errs *	
Rng 25.11886 mV 1.5 1.0 -1.5 -4.93589744 4.935897436	EVM = 1.7005 %rms Mag Err = 1.1238 %rms Phase Err = 732.34 mdeg Freq Err = -621.79 Hz SNR(MER) = 35.388 dB IQ Offset = -36.524 dB Ouad Err = -6.8413 deg Gain Imb = 25.146 dB Amp Droop = -901.0 ndB/sym Bho = 0.99971	3.8481 % pk at sym 5147 3.4995 % pk at sym 5135 2.0118 deg pk at sym 2619
B: Ch1 Spectrum - X	0 10110111 01101100	11011011 0000000 00010010
Ang -22 dBm LogMag -122 dBm Center 1.57545 GHz Res BW 2.9304 kHz TimeLen 1.303359 mSec	40 01010010 01011111 80 01001000 01001001 120 00001101 10110000 160 11111111 10010010 200 11011101 10110011 240 10010010 01111111 280 10110101 101101111 320 00110110 11000000 360 10110111 011001101	11111001 00100111 11111110 01001001 00100111 11111110 00000101 10110110 1000000 00010010 01010010 01010110 00010010 01010010 01010110 01101100 01001001 01010110 01101100 01001001 01010101 01101100 10010010 01001001 01101100 10010000 01001001 01101110 10010000 01001001 01101101 10110101 11011011 11011001 00000000 01011011 11011001 00000000 01011011 11011000 00000000 01011011
Markers		+ ¶ ×

LDPC CODES FOR NavIC L1C

ISro

डसर

ISRO

Followings are drawback of the classical LLR decoding.

- Hardware resources requirement is large as its required separate extraction of BOC (1,1) and BOC (6,1) LLRs along with two separate LDPC decoder.
- Coherent combining of two separate LDPC decoder.
- Difficult to achieve maximum coding gain.
- The necessity of complex synchronization with increased latency.

Proposed Approach

Approximate LLR is computed by using only the nearest constellation point to the received signal with a 0 (or 1) at that bit position, rather than all the constellation points as done in true LLR. It is defined as:

$$L(b) = -\frac{1}{\sigma^2} \left(\min_{s \in S_0} \left((x - s_x)^2 + (y - s_y)^2 \right) - \min_{s \in S_1} \left((x - s_x)^2 + (y - s_y)^2 \right) \right)$$

Table 1: Look up table based SBOC Modulation

Pilot	Pilot	DATA	2 B. C. C. C.	Q
BOC(1,1)	BOC(6,1)	BOC(1,1)		
-1	-1	-1	-0.547856428	-0.836572372
-1	-1	1	-0.547856428	0.836572372
-1	1	-1	-0.929241464	-0.369473006
-1	1	1	-0.929241464	0.369473006
1	-1	-1	0.929241464	-0.369473006
1	-1	1	0.929241464	0.36947300 <mark>6</mark>
1	1	-1	0.547856428	-0.83657237 <mark>2</mark>
1	1	1	0.547856428	0.836572372

Advantages

The proposed approach is having following advantages compare to classical approach: -

- Hardware simplification: As the proposed approach is LUT based So, it simplifies the hardware implementation.
- There will be only one LDPC decoder required compare to classical approach with two LDPC decoders.
- The use of single chain LLR design removes the requirement of coherent combining of the LDPC outputs which simplifies the implementation.
- Due to use of approximated LLR calculation, maximum coding gain can be achieved.
- Decoding algorithm is based upon LUT approach, hence there is a only requirement of change in look up table in case of power sharing of SBOC modulation change.

Verification Model

इसरो डिल्व

Simulation Result

ISRO

(12) PATENT APPLICATION PUBLICATION

(21) Application No.202141029025 A

(19) INDIA

(22) Date of filing of Application :29/06/2021

(43) Publication Date : 09/07/2021

(54) Title of the invention : A NOVEL SOFT SBOC & LDPC BASED LLR DECODING ALGORITHM

(51) International classification	:H03M0013110000, H04N0019960000, H04L0005140000, G06F0011340000, H04L0027060000	 (71)Name of Applicant : 1)Indian Space Research Organisation Address of Applicant :Department of Space, Antariksh Bhavan, New BEL Road, Bangalore 560094, India Karnataka India
(31) Priority Document No	:NA	(72)Name of Inventor :
(32) Priority Date	:NA	1)Dr Deepak Mishra
(33) Name of priority country	:NA	2)Neeraj Mishra
(86) International Application No	:NA	3)Sanjay D Mehta
Filing Date	:NA	4)T.V.S Ram
(87) International Publication No	: NA	
(61) Patent of Addition to Application Number Filing Date	:NA :NA	
(62) Divisional to Application Number	:NA	
Filing Date	:NA	

(57) Abstract :

A novel log likelihood ratiobased interface algorithm for efficient implementation between synthesized binary offset carrier demodulator and low-density parity-check decoder in order to achieve maximum coding gain. The look-up table based log likelihood ratio decoding algorithm is proposed for minimizing the hardware requirement with achieving the maximum coding gain. The proposed approach is much simplified compare to other existing approaches and does not provide any degradation in the performance of demodulator. Figure 3

No. of Pages : 18 No. of Claims : 2

References: -

- [1] Rappaport, Theodore S. *Wireless Communications: Principles and Practice.* Upper Saddle River, NJ: Prentice Hall, 1996, pp. 238–248.
- [2] Viterbi, A. J. "An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes," *IEEE Journal on Selected Areas in Communications*. Vol. 16, No. 2, Feb. 1998, pp. 260–264

