

NavIC Utilization in ISRO's Human Spaceflight Mission

GAGANYAAN

for Crew Module Tracking and Recovery

Speaker:

Saurabh Bhalla, Space Applications Center (SAC) Indian Space Research Organization(ISRO) Ahmedabad(GUJ). INDIA

Use case: GAGANYAAN (Tracking & Recovery)

- GAGANYAAN consists of a human-rated Launch Vehicle, Orbital Module & Crew Escape System.
- The Atmospheric Crew Escape System (ACES) will ensure the crew safety in the event of emergency (either at launch pad or during atmospheric flight regime of the vehicle)
- This presentation addresses the safetyof-life critical requirement to locate and track the position of Crew Module after splashdown

^{*}Profile Courtesy: GYTV Project SAC, Ahmedabad

Location Transmitter System Requirements

• Operational Scenario:

ISPO

After splashdown it is required to transmit the accurate location of the Crew Module (CM) to the Mission Control Centre (MCC) via an *Intermediate Satellite System Service*.

- Operational time : 6 24 hrs.
- Constellations : GPS L1C/A + NavIC L5
- **Position accuracy** : < 20m (1-σ)
- Update Rate : 1- 30 sec
- Output Format : NMEA 0183

*SatLink Courtesy: SCTD Team SAC, Ahmedabad

In-House GNSS Receiver Specifications

DVM Ver. 2

003 NeviC V2. BC1138-0 2024/S07	
NavASIC V2	

Parameter	Specification	
Supported Constellations	GPS L1 C/A, IRNSS-SPS L5,S, GAL E1B, GLO L1, SBAS L1	
Sensitivity		
Acquisition	<u>≥</u> 36 dBHz	
Tracking	≥24 dBHz	
Time to first Fix (TTFF)	< 120 sec	
Reacquisition Time (complete RF blockage < 6sec)	< 6 sec	
Accuracy		
Accuracy 1σ Position	< 10 m (<u>+</u> 1.5m stdev.)	
Accuracy 1σ Position Velocity Accuracy	< 10 m (<u>+</u> 1.5m stdev.) <u>+</u> 0.3 m/s	
Accuracy 1σ Position Velocity Accuracy Tested Dynamics	< 10 m (<u>+</u> 1.5m stdev.) <u>+</u> 0.3 m/s	
Accuracy 1σ Position Velocity Accuracy Tested Dynamics Velocity	< 10 m (<u>+</u> 1.5m stdev.) <u>+</u> 0.3 m/s 11 km/s	
Accuracy 1σ Position Velocity Accuracy Tested Dynamics Velocity Acceleration	< 10 m (<u>+</u> 1.5m stdev.) <u>+</u> 0.3 m/s 11 km/s 5g	
Accuracy 1σ Position Velocity Accuracy Tested Dynamics Velocity Acceleration Jerk	< 10 m (<u>+</u> 1.5m stdev.) <u>+</u> 0.3 m/s 11 km/s 5g 20g/s	
Accuracy 1σ Position Velocity Accuracy Tested Dynamics Velocity Acceleration Jerk Refresh Rate	< 10 m (<u>+</u> 1.5m stdev.) <u>+</u> 0.3 m/s 11 km/s 5g 20g/s Up to 5Hz	

Testing and Validation

इसरो डिंग्व

The above performance is validated with actual mission profile with following max motion parameters

	Acc(m/s*s)	Vel(m/s)	Jerk(m/s*s*s)
Max	22.40	390.64	120.91

- Keeping the multi-constellation positioning mode is ensuring continuous availability of the position.
- Advantages of using NavIC for Search & Rescue operations:
 - Better position accuracy in the defined Indian mainland due to better control on SIS errors. The constellation is providing better single frequency lonospheric corrections and faster ephemeris and clock parameter update rate.
 - Removing the dependency on the ALMANAC in case of low dynamic/static mission; reduces memory & power requirement of the hardware.

hank You

