

ICG-16 - 11 Oct 2022

Galileo timing performances monitored by the **GRC-MS**

The views expressed in this presentation are those of the authors and do not necessarily reflect the official position of EUSPA/EC

EUSPA is not responsible for any use that may be made of this information

Jérôme Delporte, Amale Kanj (CNES) **Kenneth Jaldehag (RISE)** Andrea Perucca, Franco Fiasca (INRiM) **Juan-Manuel Gonzalez (ROA)**

OUTLINE

- Context
- > GRC and GRC-MS
- •
- Main results
- Conclusions

Context

Galileo has officially started delivering services to worldwide users since the Initial Services Declaration on the 15th of December 2016

Galileo System Time (GST) is

- the <u>reference time</u> for the Galileo system
- computed on the ground in a Galileo Precise Timing Facility
- steered to UTC on a daily basis

In its navigation message, Galileo includes an estimation of its offset to UTC (referred to as GAUT) and to GPS time (referred to as GGTO)

>> see Galileo timing template on ICG website for details

GRC and GRC-MS

Main task of GRC is to provide EUSPA with a means for <u>independent</u> monitoring and assessment of the quality of Galileo Services

The GRC consists of a core facility (operated by EUSPA) and EU member states contributions (GRC-MS)

GRC-MS is a contribution to the Galileo Reference Center by EU member states and associated states :

- coordinator = CNES
- 19 partners from 11 countries
- Start = 11th Sept 2018

GRC-MS and timing

Dedicated Work Package on timing with CNES as coordinator and 3 partners (INRiM, RISE and ROA)

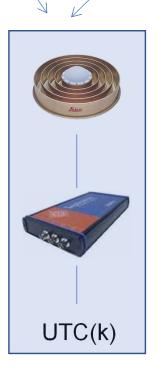
Objective: monitoring of Galileo timing performances

- ✓ Offset between UTC and Galileo System Time: UTC GST
- ✓ UTC dissemination accuracy : UTC bUTC_Galileo

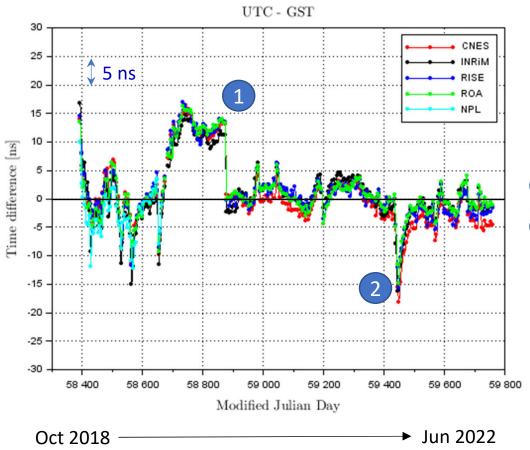
(bUTC_Galileo is the UTC information broadcast by Galileo)

- ✓ Frequency of UTC dissemination accuracy : freq(UTC bUTC_Galileo)
- ✓ GGTO accuracy
- ✓ Availability of GAUT and GGTO information
- ✓ Performance of on-board clocks

Calibration and processing

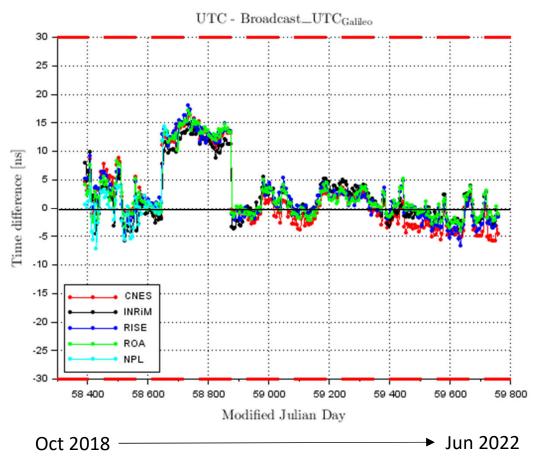


To determine GNSS_time – UTC, it is mandatory to use a <u>calibrated</u> GNSS receiver chain connected to a UTC(k)


Our stations use different calibration methods and processing:

	CNES	INRIM	RISE	ROA
GPS Calibration	absolute	Relative GPS G1/G2 calibration campaign	Relative GPS G1/G2 calibration campaign	Relative GPS G1 calibration campaign
Galileo Calibration	absolute	iono (*) then relative G1/G2 calibration campaign	iono (*) then relative G1/G2 calibration campaign	iono (*) then relative G1 calibration campaign
SW to convert RINEX to CGGTTS	SPRING	RISEGNSS	RISEGNSS	ROARIN2CGGTTS

Results: UTC - GST


Computed as [UTC - UTC(k)] + [UTC(k) - GST]

Good consistency for the different stations

- 1 Rapid correction of 10-15 ns at the end of Jan 2020
- 2 Slow correction of 15-20 ns in Sept 2021

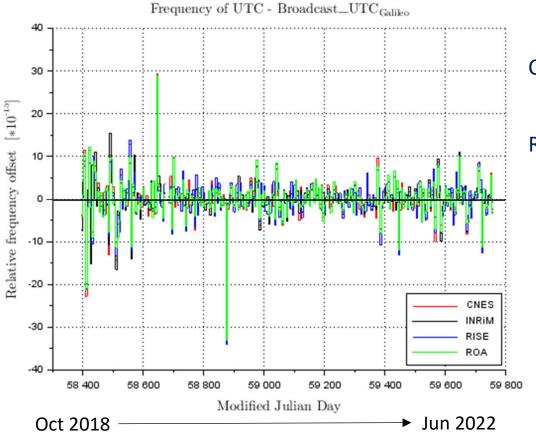
Results: UTC – bUTC_Galileo

Computed as [UTC - GST] - [bUTC GAL - GST]

Offset of ~10-15 ns from Jun 2019 to Jan 2020

Result at 95 % on any 1-month window < 16 ns

within the specifications (*)

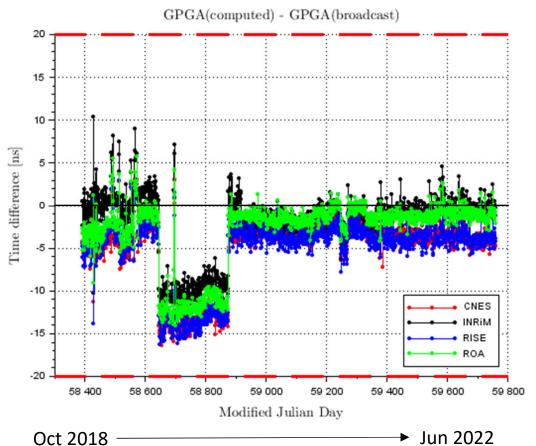

(30 ns, 95 %, normalized monthly)

Results: Frequency of UTC – bUTC_Galileo

Computed as $\Delta(UTC - bUTC_Galileo) / 5 d$

Result at 95 % on any 1-month window < 2e-14

within the specifications (*)


✓

(3e-13, 95 %, normalized monthly)

Results: GGTO accuracy

Computed as

$$\left[\mathsf{GST} - \mathsf{GPST}\right]_{\mathsf{computed}} - \left[\mathsf{GST} - \mathsf{GPST}\right]_{\mathsf{broadcast}}$$

Offset of ~10-15 ns from Jun 2019 to Jan 2020

Result at 95 % on any 1-month window < 16 ns
within the specifications (*)

(20 ns, 95 %, normalized annually)

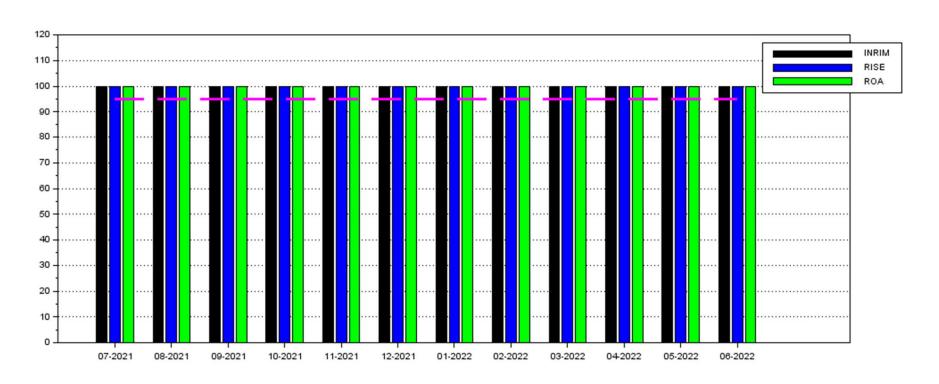
Results: GAUT and GGTO availabilities

Availability of the Galileo OS UTC time dissemination service (referred to as GAUT availability here)

>= 95 % of time a user is provided at least 1 healthy SIS (*)

Calculated over 30 d, elevation > 5°, from any point in the service coverage, incl. planned and unplanned outages

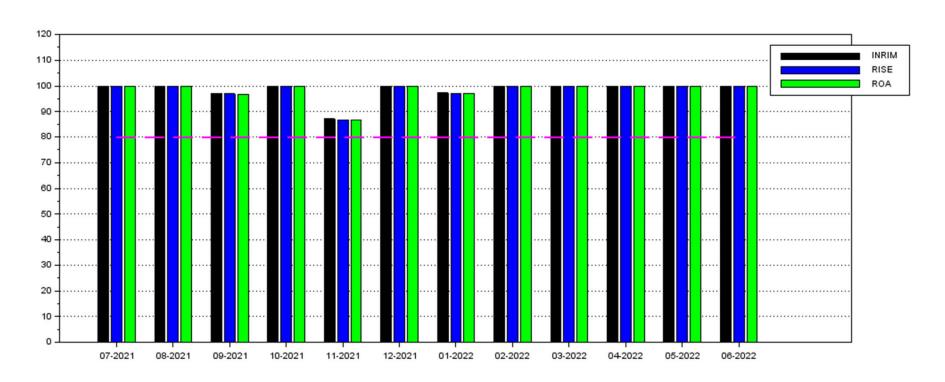
Availability of GST-GPS time offset determination (referred to as GGTO availability here)


>= 80 % of time that GGTO is broadcast by at least 1 healthy SIS (*)

Calculated over 30 d, elevation $> 5^{\circ}$, from any point in the service coverage, incl. planned and unplanned outages

In GRC-MS, GAUT and GGTO availabilities are computed for FNAV and INAV independently, only for a single station (no global computation)

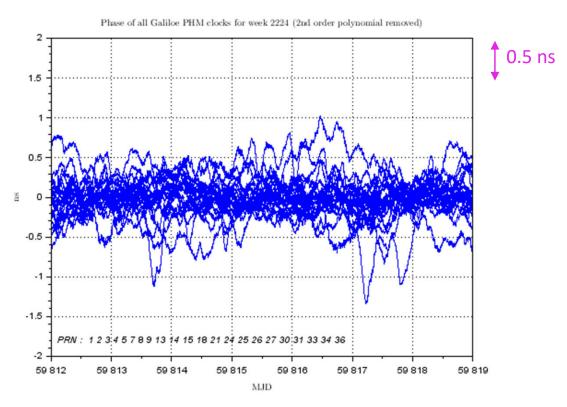
Results: GAUT availability for FNAV



100 % for the 3 stations between July 2021 and June 2022

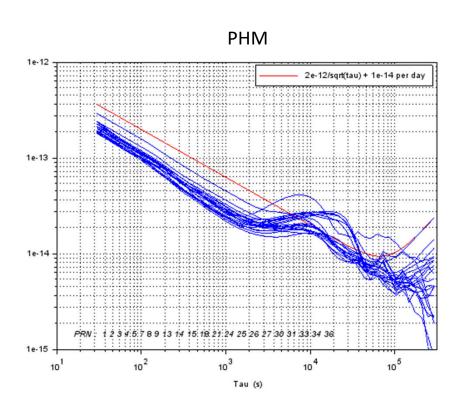
Results: GGTO availability for FNAV

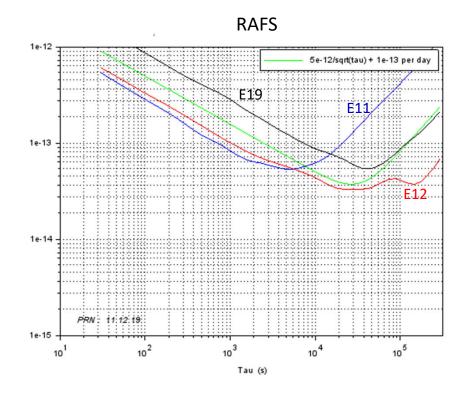
> 85 % for the 3 stations between July 2021 and June 2022



Results: on-board clocks

All Galileo satellites currently driven by a PHM except E11, E12 and E19 (RAFS)


Example of 2nd-order phase residuals of all Galileo PHM over 1 week with GRG clk products:



Results: on-board clocks

Stability of Galileo clocks on 1 week using GRG clk products:

Conclusions

The GRC-MS monitors the Galileo timing performances since Q4 2018

The Galileo timing requirements are met

Galileo on-board PHM show very good performances

Galileo on-board RAFS have very different behavior from one another, with no significant impact on the SIS Range Error thanks to the rapid updates of clock coefficients

Questions?

jerome.delporte@cnes.fr

