

Galileo I/NAV Improvement

D/NAV

UNOOSA ICG Annual Meeting – October 2022

|

+

I/NAV Improvement – User Benefits

- I/NAV Improvement Technical Content
 - Reduced Clock and Ephemeris Data
 - Reed Solomon coded Clock and Ephemeris Data
 - Secondary Synchronization Pattern
- User Exploitation and Performance
- Deployment Status

I/NAV Improvement - User Benefit

+

→ THE EUROPEAN SPACE AGENCY

*

- I/NAV Improvement User Benefits
- I/NAV Improvement Technical Content
 - Reduced Clock and Ephemeris Data
 - Reed Solomon coded Clock and Ephemeris Data
 - Secondary Synchronization Pattern
- User Exploitation and Performance
- Deployment Status

I/NAV Improvement - Content

- I/NAV improvement provides benefits along 3 axis
 - Improved Time to First Fix fast retrieval of navigation data
 Improved data demodulation robustness demodulate nav
 data also in challenging environment
 - <u>Time ambiguity resolution</u> for users with coarse time information (+/- 3 sec) to access Galileo system time without need to demodulate it from navigation message
- Implementation solution selected
 - 1. Reduced Clock and Ephemeris (redCED)
 - 2. Reed Solomon (RS)
 - 3. Secondary Synchronisation Pattern (SSP)
- Careful consideration of users
 - Improvements transparent to legacy users
- Participating (new) users will take benefit

Public SIS-ICD contains I/NAV impr. spec since 01/2021

→ THE EUROPEAN SPACE AGENCY

Reduced Clock and Ephemeris Data

60 2⁻³⁴

Basic Idea: Reduce the number of information required to generate a position fix (at cost of accuracy)

I/NAV Clock and Ephemeris Parameter

- are spread over 4 I/NAV words (I/NAV-1, -2, -3, -4)
- all 4 I/NAV words need to be received (with same IODnav) to establish a position fix

428 bits

Parameter	Definition	Bits	Scale factor	Unit		Parameter	Definition	Bits
M ₀	Mean anomaly at reference time	32*	2.31	semi-circle**	1	t _{0c}	Clock correction data reference Time of Week	14
Δn	Mean motion difference from computed value	16*	2-43	semi-circle/s**	1	a _{f0}	SV clock bias correction coefficient	31*
	Eccentricity	32	2-33	dimensionless		a _{fl}	SV clock drift correction coefficient	21*
A ^{1/2}	Square root of the semi-major axis	32	2-19	m ^{1/2}	1	a _{f2}	SV clock drift rate correction coefficient	6*
OMEGA ₀	Longitude of ascending node of orbital plane at weekly epoch***	32*	2-31	semi-circle**	Clock Correction Parameters 7 Table 7-5: Clock correction parameter		72 neters	
i ₀	Orbit inclination angle at reference time	32*	2-31	semi-circle**	1			
OMEGA	Argument of perigee	32*	2.31	semi-circle**	1			
OMEGADOT	Rate of change of right ascension	24*	2-43	semi-circle/s**	1			
IDOT	Rate of change of inclination angle	14*	2-43	semi-circle/s**				
Cuc	Amplitude of the cosine harmonic correction term to the argument of latitude	16*	2 ⁻²⁹	rad				
Cus	Amplitude of the sine harmonic correction term to the argument of latitude	16*	2-29	rad				
Crc	Amplitude of the cosine harmonic correction term to the orbit radius	16*	2.2	m				
C _{rs}	Amplitude of the sine harmonic correction term to the orbit radius	16*	2.5	m				
C _{ic}	Amplitude of the cosine harmonic correction term to the angle of inclination	16*	2.29	rad				
C _{is}	Amplitude of the sine harmonic correction term to the angle of inclination	16*	2-29	rad				
t _{0e}	Ephemeris reference time	14	60	8	1			
Total ephemeris bits		356			1			

Reduced Clock and Ephemeris Parameter

- Idea: reduce number of CED parameters and bit allocation to squeeze all information into a single I/NAV word (<u>122 bits</u>)
- redCED
 - are derived <u>on-board</u> from full CED

122 bits

- provide degraded accuracy compared to CED
- User exploitation:
 - First position fix with redCED

Parameter	Number of bits	Scale factor	Reference value	Unit
⊿A _{red}	5*	2 ⁸	29600000	meter
e _{xred}	13*	2-22	0	dimensionless
eyred	13*	2-22	0	dimensionless
⊿i _{ored}	17*	2*22	56/180	semi-circle**
Ω_{ored}	23*	2*22	0	semi-circle**
λ_{ored}	23*	2.22	0	semi-circle**
a _{fored}	22*	2-26	0	S
afired	6*	2-35	0	s/s
Total bits	122			

Basic Idea: Introduce additional redundancy in navigation message to correct for lost or corrupted data

Introduction of <u>Reed-Solomon Clock and Ephemeris Data</u> (RS CED) to the I/NAV message (E1-B)

- RS coding provides
 - Correction of residual errors <u>AND</u> recovery of erased information
- 4 different RS CED word are generated <u>on-board</u> (obtained from CED), per sub-frame 2 RS CED words are broadcast
- Any set of four different error free received (RS) CED words recovers the CED
 - Examples:

eesa

Basic Idea: Introduce defined bit pattern in msg that can be detected by correlation (no need to demodulate message)

Introduction of <u>Secondary Synchronization Pattern</u> (SSP) into the I/NAV message (E1-B) supports reconstruction of the GST, without the need to demodulate the navigation message

	SSP1	SSP2	SSP3
Plain SSP configurations	00000100	00101011	00101111

- SSP replaces spare bits on E1-B
- Required level of coarse synchronisation
- Ambiguous Time Of Week (TOW) information can be retrieved
 - SSP1 detected \rightarrow TOW modulo 6s = 1s
 - SSP2 detected \rightarrow TOW modulo 6s = 3s
 - SSP3 detected \rightarrow TOW modulo 6s = 5s

Enables fast GST recovery (modulo 6 seconds) already at symbol level

E1-B

11

- I/NAV Improvement User Benefits
- I/NAV Improvement Technical Content
 - Reduced Clock and Ephemeris Data
 - Reed Solomon coded Clock and Ephemeris Data
 - Secondary Synchronization Pattern
- User Exploitation and Performance
- Deployment Status

RS-CED/redCED - User Exploitation and Performance (I)

Key performance parameter from user perspective is TTFF (also as consequence of better data demodulation robustness)

- Reduced Clock and Ephemeris (redCED)
 - Reed Solomon Clock and Eph. Data (RS-CED)
- User performance improvement validated during I/NAV IOV in Urban Environment

RS-CED/redCED - User Exploitation and Performance (II)

Reed Solomon Clock and Ephemeris Data (RS-CED) and redCED for improved Time to Data

- Time to Data (TTD) performance parameter on single link (different than Time to First Fix)
- Performance characterization in Open Sky Environment (makes it independent from local environment and deterministic)
- Time to Data for coarse accuracy (as per redCED performance characterization) and full accuracy:

Parameter	Performance as measured (not a commitment)	Percentile
TTD [sec] for <u>coarse accuracy</u> with I/NAV improvement (redCED and RS-CED use) in Open Sky	16*	95%
TTD [sec] for <u>full accuracy</u> with I/NAV improvement (RS-CED use) in Open Sky	22*	95%
TTD [sec] for <u>full accuracy</u> w/o I/NAV improvement in Open Sky	32*	95%

*: as per M. Paonni et al, Improving the Performance of Galileo E1-OS by Optimizing the I/NAV Navigation Message, ION 2019

- - - Dashed square area = typical Open Sky case

ESA UNCLASSIFIED - Releasable to the Public

13

→ THE EUROPEAN SPACE AGENCY

SSP - User Exploitation and Performance (I)

- <u>SSP</u> provide to users that already have coarse time information (+/- 1.5 sec) the means to resolve remaining time ambiguity and give access to the Galileo System Time. No need to demodulate time information from the navigation message.
- User performance improvement validated during I/NAV IOV in Urban Environment

SSP - User Exploitation and Performance (II)

Secondary Synchronisation Pattern (SSP) for Time (GST) Dissemination

- Time to Time (TTT) performance parameter on a single link for the provision of time (GST) information
 - Note: SSP provides time ambiguity resolution within interval of +/- 3 sec

Figure 4-1: Time convergence Legacy vs SSP, Phase 1 - 18/07/2022

Parameter	Performance as measured (not a commitment)	Percentile
TTT [sec] for <u>time ambiguity</u> (with SSP) in Open Sky	6	95%
TTT [sec] for <u>absolute time</u> (with legacy I/NAV) in Open Sky	13	95%

Validated in Orbit

- I/NAV Improvement User Benefits
- I/NAV Improvement Technical Content
 - Reduced Clock and Ephemeris Data
 - Reed Solomon coded Clock and Ephemeris Data
 - Secondary Synchronization Pattern
- User Exploitation and Performance
- Deployment Status

ESA UNCLASSIFIED - Releasable to the Public

I/NAV Improvement Deployment Status

I/NAV improvement is calculated on-board the satellite

- No change at Ground Mission Segment
- New software for signal generation unit available and under upload

Current Status

- 2 satellites (GSAT0223 and GSAT0224) already provide I/NAV improvement
- Remaining Galileo FOC satellites follow soon

I/NAV improvement is there – get ready to use it!

BACKUP MATERIAL

+

ESA UNCLASSIFIED - Releasable to the Public

→ THE EUROPEAN SPACE AGENCY

*

Basic Idea: Introduce additional redundancy in navigation message to correct for lost or corrupted data

Analogy for illustration

Basic Idea: Introduce additional redundancy in navigation message to correct for lost or corrupted data

Analogy for illustration

Basic Idea: Introduce additional redundancy in navigation message to correct for lost or corrupted data

Analogy for illustration

Basic Idea: Introduce additional redundancy in navigation message to correct for lost or corrupted data

Analogy for illustration

→ THE EUROPEAN SPACE AGENCY