WG-D and WG-B's Task Force on **Applications of GNSS** for Disaster Risk Reduction

Report to ICG-17

18 October 2023

Léo Martire^{1, 2}, J. Shen³, N. Takamatsu⁴

¹ Jet Propulsion Laboratory, California Institute of Technology ² International GNSS Service Central Bureau

- ³ Beijing UniStrong Science and Technology Co. Ltd.
- ⁴ Geospatial Information Authority of Japan

INTERNATIONAL IGS GNSS SERVICE

© 2023 International GNSS Service

Outline

- Scope Reminder
 - Context within ICG
 - GNSS Techniques and Natural Hazards
- Goals: Reminder and Completion
- Attendance and Membership
- Joining the DRR Task Force
- GNSS-Based Tools for DRR
- Suggested Recomendations

2

Scope Reminder - Context within ICG

This Task Force was created at ICG-16 in October 2022, following WG-D's Recommendation #26 and in tandem with WG-B.

Rationale: Apparent lack of international coordination on topics at the intersection of **GNSS applications** and **disaster risk reduction**.

Focus:GNSS-based monitoring and remote sensing,
not transmission of alerts, not replacement of existing EWS.

Task Force Co-Chairs:

IGS (Léo Martire, WG-D),China (Jun Shen, WG-B),Japan (Naofumi Takamatsu).

Scope Reminder - GNSS Techniques vs. Hazards

GNSS-based techniques enable the (remote) sensing of the whole surface-atmosphere system. <u>Objective:</u> use GNSS to **augment early warning systems** for natural hazards.

technique	probing region	relevant to
GNSS Precise Point Positioning (GNSS-PPP)	ground displacements (3D position of the receiver)	earthquakes
GNSS Reflectometry (GNSS-R)	surface conditions (<i>e.g.</i> , soil moisture, ice thickness)	floods
GNSS Radio Occultation (GNSS-RO)	surface to mid-stratosphere (40 km) (temperature + moisture)	tsunamis wildfires
GNSS Polarimetric RO (GNSS-PRO)	surface to mid-stratosphere (40 km) (temperature + moisture + heavy precipitation)	volcanic eruptions
GNSS Ground-Based Ionospheric TEC (GNSS-TEC)	ionosphere (100-1500 km) (Total Electron Content - TEC)	solar storms CMEs

4

Goals: Reminder and Completion

1. Assemble a *diverse group of members* representative of the GNSS community.

Diversity: 19 countries represented by at least 1 member (12 USA, 8 China, 5 Japan, 4 Fiji).
 Natural hazards: at least 2 experts on each type.
 GNSS expertise: PPP, TEC, administration, and source determination are well-represented; other fields of expertise are still slightly lacking.

- 2. Discuss *recommendations* for the next steps in using GNSS for natural hazards; present those at the yearly meeting of the International Committee on GNSS (ICG).
 - \Rightarrow Today's discussion.
- 3. Develop science connections to the strategic plans of the relevant agencies. No significant progress.
- 4. Develop operational tools that would benefit natural hazards early warning systems.
 12 expert presentations given and 10 tools catalogued and over the course of the FY.

Attendance and Membership during FY23

Joining the DRR Task Force

Please fill the following form: <u>https://forms.gle/vJRt1TwaT6eRDoB39</u>.

Please forward it to any and all colleagues who might be interested in contributing.

If there are any issues with Google Forms, please contact us directly (leo.martire@igs.org).

GNSS-Based Tools for Disaster <u>Risk Reduction</u>

		operational		semi-operational	experimental
Name	Point(s) of Contact	Technique	Natural Hazards (main focus, secondary focus)		
ShakeAlert ¹	USGS, <u>USA</u>	PPP	earthquakes		
REGARD ²	GSI, <u>Japan</u>	PPP	tsunamis, earthquakes		
G-FAST ³	Crowell (UW, <u>USA</u>), Melgar Moctezuma (UO, <u>USA</u>)	PPP	tsunamis, earthquakes		
R-CET GNSS ⁴	d'Anastasio (GNS Science, <u>New Zealand</u>) Geng (WU, <u>China</u>), McClusky (GA, <u>Australia</u>)	РРР	earthquakes, tsunamis		
	Koshimura (Tōhoku University, <u>Japan</u>)	PPP	tsunami (inundation maps)		
VARION ⁵	Ravanelli (IPGP, France)	PPP + TEC	tsunamis, volcanic eruptions, space weather		
GUARDIAN ⁶	Martire, Krishnamoorthy, Komjáthy (JPL, <u>USA</u>)	TEC	tsunamis, volcanic eruptions, space weather		
IPS ⁷	Sgammini (JRC, <u>Italy</u>)	TEC	space weather		
	Han (University of Newcastle, <u>Australia</u>)	RO	tsunamis, volcanic eruptions		
gnssrefl ⁸	Larson (University of Bonn, <u>Germany</u>)	R	sea level, drought, floods		

¹ <u>https://www.shakealert.org/</u>. Focus is the USA.

² Originally called RAPiD (<u>https://doi.org/10.1029/2011JB008750</u>). Focus is Japan.

³ Is currently in trial use by tsunami warning centres both in the US and other Pacific countries.

⁴ R-CET is a 5 year project looking into a variety of tools for rapid modelling of earthquakes and tsunamis; a specific GNSS branch exists.

⁵ Was used in the exploratory stages of the GUARDIAN development.

⁶ Near-real-time data is public and free: <u>10.1007/s10291-022-01365-6</u>, <u>guardian.jpl.nasa.gov/, cddis.nasa.gov/archive/gnss/products/realtime/jpl_ionosphere/</u>.

⁷ Requirement is to provide space weather warnings 24 hours in advance. Uses machine learning. Is funded by the European Commission.

⁸ <u>https://github.com/kristinemlarson/gnssrefl.</u>

8

RR

Suggested Recommendation

DRAFT Recommendation, hosted in WG-D:

- <u>Demonstrate the deployment for a multi-technique GNSS station in an area of sparse coverage.</u>
 A single ground station is sufficient for PPP, TEC, and interferometric R.
 Define and answer the important questions, provide a guide for future installations.
 Location? Land authorisations? Equipment? Connectivity? Operations? *Etc.*.
- Foster open+free+accessible software+data. In particular:
 - Encourage open-source, free, readily- and easily-usable software.
 - Encourage open-access, real-time, high-rate, precise GNSS products.
- Pursue the development of data assimilation, data fusion for various types of datasets, and crowd-sourcing GNSS data. E.g.:
 - USGS' ShakeMap,
 - ESA's Camaliot project.