

Galileo Reference Antenna Pattern

F. Menzione, M. Paonni – European Commission, JRC.E.2 J.P. Boyero – European Commission, DEFIS.C.2 Stefan Wallner – European Space Agency Massimo Ciollaro – EUSPA

Presentation Highlight

- BACKGROUND
- MODEL ASSUMPTIONS
- MULTI-STEP 3D RECONSTRUCTION PROCEDURE
- RESULTS EXAMPLES
- GALILEO PATTERN DRIVEN SPACE SERVICE VOLUME LINK
 BUDGET ANALYSIS
- CONCLUSIONS

Background

- The Galileo Programme is deriving a "Galileo Reference Antenna Pattern"
- This task responds to the ICG SSV (ICG-14, 2019) recommendation of on "GNSS transmit antenna patterns or equivalent representative modelling information, *potential of GNSS for space users*
- Galileo intends to provide the user community with a representative model. The derivation is built on measurements performed on all the Galileo FOC satellites antennas

Space Service Volume

Model Assumptions

- **A 3D antenna radiation pattern reconstruction procedure** derived from antenna's characterization techniques has been considered to mitigate unexpected discontinuities
- Observations have been nested or clustered within different subjects at the bottom level and belonging to the same Galileo Constellation pattern population at the top level
- The approach aims at extending the model to a more general representation, which statistically takes into account possible antenna realizations and residual errors through a correspondent **bound estimation**
- Those bounds corresponds to 2sigma (95%) of the expected values and they will be included in the metadata files as Upper and Lower Bounds

MULTI-STEP 3D RECONSTRUCTION PROCEDURE

MULTI-STEP 3D RECONSTRUCTION PROCEDURE

MULTI-STEP 3D RECONSTRUCTION PROCEDURE

Galileo E1-BC 3D Constellation [dBW] *EIRP*_{GRAP,E1-BC,dBW}

Galileo E1-BC 3D Constellation [dBW] *EIRP*_{GRAP,E1-BC,dBW} - polar view

- The Galileo Reference Antenna Pattern is provided in terms of Equivalent Isotropic Radiated Power (EIRP) with respect to the azimuth and co-elevation angles.
- The EIRP corresponds to the minimum user received power at ground level according the Galileo OS SIS ICD for the different signals (i.e. E5ab-IQ, E6-BC and E1-BC)

Galileo E1-BC 3D Constellation [dBW] EIRP_{GRAP.E1-BC.dBW} - polar view

Galileo E1-BC 3D Constellation [dBW] *EIRP*_{GRAP,E1-BC,dBW}

Galileo E1-BC 3D Constellation EIRP expected 95% variation [dB] $2\sigma_{\text{GRAP,E1-BC,dB}}(\theta, \phi)$ - polar view

Galileo E1-BC EIRP [dBW] (cut @0 deg azimuth) with expected 95% variation

Galileo E1-BC EIRP [dBW] (cut @45 deg co-elevation) with expected 95% variation

Galileo E1-BC EIRP [dBW] (cut @60 deg co-elevation) with expected 95% variation

GALILEO PATTERN DRIVEN SSV LINK BUDGET ANALYSIS

(Teta) and Altitude with respect to

MODEL METADATA

• The model metadata will be organized according to the following format

Symbol	Description	Size	Ref. File
$EIRP_{GRAP,f,dBW}(\theta,\varphi)$	EIRP [dBW]	[91x361], 1deg	GRAP_File_****.GRAP_EIRP_d BW_****.xls
$EIRP_{CI,f,dBW}(\theta,\varphi)\Big _{(+)}$	EIRP Upper Bound (95%) [dBW]	[91x361], 1deg	GRAP_File_****.GRAP_UB_dB W_****.xls
$EIRP_{CI,f,dBW}(\theta,\varphi)\Big _{(-)}$	EIRP Lower Bound (95%) [dBW]	[91x361], 1deg	GRAP_File_****.GRAP_LB_dB W_****.xls

where ****. is replaced by {E1__, E5a_, E5b_, E6__} according to the target frequency band.

CONCLUSIONS

- The Galileo programme is deriving the Galileo Reference Antenna Pattern, covering the full pattern
- This task is a response to ICG recommendation and it is meant to support GNSS users in space
- The approach will allow to easily update the model if additional measurements become available
- Any feedback from users and GNSS provides within the ICG is highly welcome

Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

