

Interoperability Analysis of Open PPP/PPP-RTK Services

Rui Hirokawa, Mitsubishi Electric Corporation

MITSUBISHI ELECTRIC CORPORATION

ICG-17, Madrid October 15-20, 2023

Age of Satellite Based Open PPP/PPP-RTK Services

Many open satellite-based PPP/PPP-RTK services are available.

1

Introduction to CSSRlib

- ✓ Open source Toolkit for open PPP/PPP-RTK services by Python (available from pypi/github)
- ✓ Positioning techniques: RTK, PPP-RTK, PPP/PPP-AR
- ✓ Services: QZSS CLAS, QZSS MADOCA PPP, Galileo HAS, BDS PPP, IGS product
- ✓ Tutorials: Jupyter Notebook
- ✓ Utilities for visibility analysis, plotting

Specifications of Open PPP/PPP-RTK Services

Open PPP/PPP-RTK services:

- 1. QZSS CLAS (PPP-RTK)
- 2. QZSS MADOCA PPP
- Galileo HAS
- **BDS PPP**
- 5. IGS product

	QZSS CLAS	QZSS MADOCA-PPP	Galileo HAS	BDS PPP
Techniques	PPP-RTK	PPP	PPP	PPP
Data rate	1,695 bps	1,695 bps	448 bps	462 bps
Service Area	Japan	Asia/Oceania	Global (SL1) / Regional (SL2)	China

Correction data provided by Open PPP/PPP-RTK services

	QZSS	CLAS	QZSS MADOCA PPP		Galileo HAS		BDS PPP		
Service	PPP-RTK		PP	PPP		PPP		PPP	
Format	CSSR		CSSR		Similar to CSSR		Customized CSSR		
Supported GNSS	G+E+	J	G+	E+R+J	G+	E	G+C	:	
Orbit	✓	(30sec)	✓	(30sec)	✓	(50sec)	✓	(48sec)	
Clock	✓	(5sec)	✓	(5sec)	✓	(10sec)	✓	(6sec)	
Code Bias	✓	(30sec)	✓	(30sec)	✓ ;	(50sec)	1	(48sec)	
Phase Bias	✓	(30sec)	✓ ,	(30sec)			 		
lonosphere	✓	(30sec)	,		·				
Troposphere	✓	(30sec)					1		
URA	✓	(30sec)							

RINEX signal code:

G: 1C, 2X, 2W, 5X

E: 1X, 5X

J: 1C, 2X, 5X

G: 1C, 1W, 1X, 2X, 2W, 5X

R: 1C, 1P, 2C, 2P

E: 1X, 5X

J: 1C, 1X, 2X, 5X

G: 1C, 2L, 2P

E: 1C, 5Q, 7Q, 6C

C: 2I, 1D, 1P, 5D, 5P, 7D, 7P, 6I

No code bias for GPS

'2P' (P (AS off)) should be '2W' (Z-tracking (AS on))?

RTCM SSR

IGS SSR RTCM 4076

orbit
$$X_{orbit} = X_{broadcast} - \delta X$$

$$\delta X = A\delta O = [e_r \quad e_a \quad e_c]\delta O$$

$$e_a = \frac{\dot{r}}{|\dot{r}|}, e_c = \frac{r \times \dot{r}}{|r \times \dot{r}|}, e_r = e_a \times e_c$$

$$\delta oldsymbol{o} = egin{bmatrix} \delta O_{radial} \ \delta O_{along} \ \delta O_{cross} \end{bmatrix} + egin{bmatrix} \delta \dot{O}_{radial} \ \delta \dot{O}_{along} \ \delta \dot{O}_{cross} \end{bmatrix} (t-t_0)$$

clock
$$t_{sat} = t_{broadcast} - \delta C/c$$
 $\delta C = C_0 + C_1(t - t_0) + C_2(t - t_0)^2$

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} + cbias$$

phase bias

$$\widetilde{CP}_{corrected} = CP_{observed} + pbias$$

IGS product

SP3c/SP3d **Clock-RINEX Bias-SINEX**

orbit

SP3c/SP3d

$$\mathbf{X}_{ei} = \begin{bmatrix} cos(\omega_{ie}\Delta t_i) & -sin(\omega_{ie}\Delta t_i) & 0\\ sin(\omega_{ie}\Delta t_i) & cos(\omega_{ie}\Delta t_i) & 0\\ 0 & 0 & 1 \end{bmatrix} \mathbf{X}_i , \Delta t_i = t_i - t$$

 $X_{orbit.ca} = interpolate(\Delta t_i, X_{ei})$

$$e_z = \frac{-r}{|-r|}, e_s = \frac{r_{sun} - r}{|r_{sun} - r|}, e_y = \frac{e_z \times e_s}{|e_z \times e_s|}, e_x = e_y \times e_z$$

$$X_{orbit} = X_{orbit,cg} + [e_x \quad e_y \quad e_z]d_{offset}$$

clock

$$t_{sat} = interpolate(\Delta t_i, t_i)$$

Clock-RINEX

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} - cbias$$

phase bias
$$\widetilde{CP}_{corrected} = CP_{observed} - pbias$$

Bias-SINEX

Specification of Compact SSR Messages

QZSS MADOCA PPP IS-QZSS-MDC-001

orbit
$$X_{orbit} = X_{broadcast} - \delta X$$

$$\delta X = A\delta O = \begin{bmatrix} e_r & e_a & e_c \end{bmatrix} \delta O$$

$$e_a = \frac{\dot{r}}{|\dot{r}|}, e_c = \frac{r \times \dot{r}}{|r \times \dot{r}|}, e_r = e_a \times e_c$$

$$\delta oldsymbol{o} = egin{bmatrix} \delta O_{radial} \ \delta O_{along} \ \delta O_{cross} \end{bmatrix}$$

clock

$$t_{sat} = t_{broadcast} - \delta C/c$$
$$\delta C = C_0$$

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} + cbias$$

phase bias

$$\widetilde{CP}_{corrected} = CP_{observed} + pbias$$

QZSS CLAS

IS-QZSS-L6-005

$$X_{orbit} = X_{broadcast} - \delta X$$

$$\delta X = A\delta O = [e_r \quad e_a \quad e_c]\delta O$$

$$e_a = \frac{\dot{r}}{|\dot{r}|}$$
, $e_c = \frac{r \times \dot{r}}{|r \times \dot{r}|}$, $e_r = e_a \times e_c$

$$\delta oldsymbol{o} = egin{bmatrix} \delta O_{radial} \ \delta O_{along} \ \delta O_{cross} \end{bmatrix}$$

clock
$$t_{sat} = t_{broadcast} - \delta C/c$$
 $\delta C = C_0$

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} - cbias$$

phase bias
$$\widetilde{CP}_{corrected} = CP_{observed} - pbias$$

Galileo HAS IDD RTCM 1059/1060, 1242/1243

orbit

$$X_{orbit} = X_{broadcast} - \delta X$$

$$\delta X = A\delta O = \begin{bmatrix} e_r & e_a & e_c \end{bmatrix} \delta O$$

$$e_a = \frac{\dot{r}}{|\dot{r}|}, e_c = \frac{r \times \dot{r}}{|r \times \dot{r}|}, e_r = e_a \times e_c$$

$$\delta \boldsymbol{o} = \begin{bmatrix} \delta O_{radial} \\ \delta O_{along} \\ \delta O_{cross} \end{bmatrix} + \begin{bmatrix} \delta \dot{O}_{radial} \\ \delta \dot{O}_{along} \\ \delta \dot{O}_{cross} \end{bmatrix} (t - t_0)$$

clock

$$t_{sat} = t_{broadcast} - \delta C/c$$

$$\delta C = C_0 + C_1(t - t_0) + C_2(t - t_0)^2$$

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} + cbias$$

Galileo HAS SIS

HAS SIS ICD v1.0

orbit

$$X_{orbit} = X_{broadcast} + \delta X$$

$$\delta X = A\delta O = [e_r \quad e_a \quad e_c]\delta O$$

$$e_a = \frac{\dot{r}}{|\dot{r}|}, e_c = \frac{r \times \dot{r}}{|r \times \dot{r}|}, e_r = e_a \times e_c$$

$$\delta oldsymbol{o} = egin{bmatrix} \delta O_{radial} \ \delta O_{along} \ \delta O_{cross} \end{bmatrix}$$

clock

$$t_{sat} = t_{broadcast} - \delta C/c$$
$$\delta C = C_0$$

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} + cbias$$

phase bias

$$\widetilde{CP}_{corrected} = CP_{observed} + pbias$$

BDS PPP

BDS-SIS-ICD-PPP-B2b-1.0

orbit

$$X_{orbit} = X_{broadcast} - \delta X$$

$$\delta X = A\delta O = [e_r \quad e_a \quad e_c]\delta O$$

$$e_r = \frac{r}{|r|}, e_c = \frac{r \times \dot{r}}{|r \times \dot{r}|}, e_a = e_c \times e_r$$

$$\delta oldsymbol{o} = egin{bmatrix} \delta O_{radial} \ \delta O_{along} \ \delta O_{cross} \end{bmatrix}$$

Different definition

clock

$$t_{sat} = t_{broadcast} - \delta C/c$$

$$\delta C = C_0$$
Positive?

code bias

$$\widetilde{PR}_{corrected} = PR_{observed} - cbias$$

clock

Analyzed the sign convention for Orbit/Clock/Bias correction

Commonly used () and un-commonly used () sign convention for SSR corrections

orbit
$$X_{orbit} = X_{broadcast} + /- \delta X$$

$$t_{sat} = t_{broadcast} + /-\delta C/c$$

code bias
$$\widetilde{PR}_{corrected} = PR_{observed} + /-cbias$$

phase bias
$$\widetilde{CP}_{corrected} = CP_{observed} + / -pbias$$

	IGS product	RTCM SSR IGS SSR Compact SSR	Galileo HAS IDD	Galileo HAS SIS	BDS PPP	QZSS MADOCA PPP	QZSS CLAS
Orbit	*1	-	-	+	_ *2	-	-
Clock	*1	-	-	-	+ *3	-	-
Code Bias	-	+	+	+	-	+	-
Phase Bias	-	+	/A	+		+	-

^{*1} Provided as satellite position and clock instead of correction

^{*2} Definition of coordinate transformation is different from RTCM SSR.

^{*3} Estimated the sign based on the analysis

Invalid and Do-Not-Use flag

- ✓ For the signed value (n-bit), some bit-patterns are defined as "not available" or DNU.
- ✓ For BDS PPP: "-2ⁿ⁻¹+1" seems to be "not available" (undocumented)

	RTCM SSR IGS SSR Compact SSR	Galileo HAS	BDS PPP
Data not available	-2^{n-1}	-2^{n-1}	$-2^{n-1}+1$
Do-Not-Use (DNU)	n.a.	$2^{n-1}-1$	n.a.

Estimated based on the analysis

PPP: QZSS MADOCA-PPP, Galileo HAS (SIS), BDS PPP

Note for Galileo HAS BDS PPP

Kamakura, Japan is currently outside of service area!

Conclusion

- An open-source toolkit for PPP/PPP-RTK, CSSRlib was introduced
- The inter-operability between four PPP/PPP-RTK services are analyzed:
 - ✓ The differences such as sign convention are found.
- The performance of open PPP/PPP-RTK services is evaluated.

[For future]

- Other Technical Items: Phasing, Coordinates, etc.
- How will the information be included in the provider's report?
- Do we need to define the recommendation for the convention?

