

GSeisRT: GNSS point positioning engine for widearea geohazard monitoring in real time

Jianghui GENG, Kunlun ZHANG, Jiang GUO

GNSS Research Center, Wuhan University, China 18 Oct 2023 Madrid, Spain

GNSS Research Center Wuhan University

Rapid response to earthquakes/tsunamis

- Increasing resilience to earthquakes
 - Capture earthquake motions in real time
 - Rapid magnitude determination
 - Issue timely & accurate alerts
- However, lessons from 2011 M9.0 Tohoku-

Oki earthquake/tsunami response

- Seismic sensors to capture motions
- M7.9 only until hours later
- Underestimate evacuation regions
- Tens of thousands of casualties

Madrid 2023.10.18

Drifting displacements of meter level recovered from accelerograph 300cm/sec² Acceleration Raw accelerograph 0 -300-Velocity cm/sec Baseline corrections can hardly be done in real time Baseline error -50 0 Displacement 1.0 mm/s2 baseline error g results in 1.8 m displacement drift -500-20 60 40 0 Time (s) PRIDELab

GNSS displacements

• Ground displacements directed measured using real-time GNSS

IGS-RT to provide globally applicable products

- IGS: International GNSS Service
 - □ 300+ stations for real-time (RT) satellite orbit/clock/bias determination

GSeisRT software

- Self-contained open-source point positioning engine
 - Undifferenced ambiguity resolution
 - Highest and steadiest positioning precision

GSeisRT has been applied to five areas

GPS-only vs. Multi-GNSS

PPP vs. PPP-AR

• Ambiguity fixing at a single station suppresses long-term variations

PPP vs. PPP-AR

- 980 NOTA stations within 10 days
- RMS against IGS weekly solutions

活

Madrid 2023.10.18

GSeisRT GUI

Functions

- **D** Real-time positioning
- Ionospheric monitoring
- Teaching Demo

PRIDELab

Ο ...

Earthquakes captured by GSeisRT in real time

2020-06-23 M7.4 Oaxaca, Mexico

Station : OXUM (58 km from the epicenter)

□ Real-time magnitude is M7.3 from PGD scaling

Earthquakes captured by GSeisRT in real time

D 2020-06-24 **M5.8** California, USA

Station : P466 (17 km from the epicenter)

□ Real-time magnitude is M5.7 from PGD scaling

- GSeisRT can realize multi-GNSS PPP, ambiguity resolution and achieve cm to sub-cm precision in real time
 - The more satellites, the better positioning precision and robustness
 - Ambiguity resolution lead to higher accuracy and steady time series
- GSeisRT is open and free to the science community for joint geophysical research efforts

Thank you very much!

Jianghui GENG jgeng@whu.edu.cn pride.whu.edu.cn

