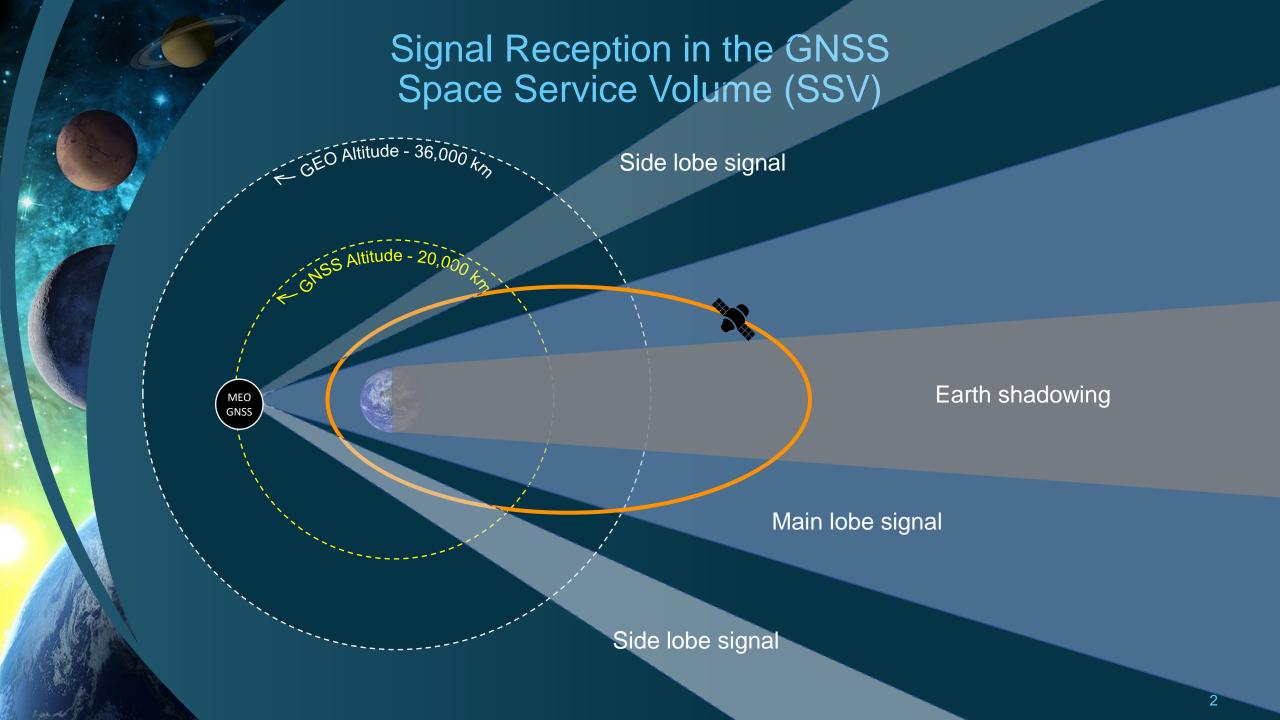


Status Update on ICG WG-B Space Use Subgroup (SUSG) Activities

Werner Enderle (Europe/ESA)


Joel Parker (USA/NASA)

Xinuo Chang (China/CAST)

Co-Chair of ICG WG-B Space Use Subgroup

ICG-17 Mtg, WG-B, Madrid, Spain, 17 October 2023

ICG WG-B Space Use Subgroup (SUSG) Terms of Reference

- As adopted 15 Apr 2021
 - Objectives of Space Use Subgroup:
 - Lead evolution of the Interoperable Multi-GNSS Space Service Volume including the use of GNSS for missions beyond the existing SSV (e.g. lunar).
 - Encourage developments of space-based user equipment and emerging user community.
 - Encourage coordination with Interagency Operations Advisory Group (IOAG) and International Space Exploration Coordination Group (ISECG).
 - Encourage development of new services and augmentations beneficial to space users.
 - Promote space user community needs within ICG.
- The Space Use Subgroup operates within the scope of the overall ICG Terms of Reference.
 - https://www.unoosa.org/documents/pdf/icg/2021/ICG15/ICG_ToR2021amended.pdf
- A review of the ToR was conducted during 2022/2023 and no need for ToR changes have been identified

Space Use Subgroup Work Plan

Work Plan, as adopted on 24 Sep 2021 at ICG-15, was reviewed and updated, if deemed necessary

WP#	Activity	Lead	Participation
1	Public availability of provider antenna/signal technical data and requisite models	India	China Japan Europe USA
2	GNSS Space User Mission Profiles and Needs	China	USA Europe Japan
3	GNSS space user timing requirement analysis and space user operations recommendations	Europe	USA China Japan India
4	Expansion of GNSS SSV to Support Lunar Operations	USA	Russia China Japan Europe
5	GNSS space user Standards	Europe	Russia USA China India

WP 1 - Public availability of provider antenna/signal technical data and requisite models

Activity objective:

Improving the use of GNSS in SSV(Space Service Volume) by considering the publicly available GNSS
antenna pattern data (includes main lobe and side lobe) or equivalent representative modeling
information.

Approach:

- a) Assemble the list of available GNSS antenna patterns and equivalent antenna modeling.
- b) GNSS service providers are invited to share the GNSS antenna pattern of current operational civilian GNSS signals.
- c) Simulations will be done to generate variable transmit EIRP and the received C/No for SSV user.
- d) This work plan approach increases the GNSS signal availability for SSV applications.

Activity outcome:

- Provides accurate simulation data for GNSS satellite availability and signal received power levels to space users.
- Publication of simulation results in SSV booklet version 3.0.

WP 2 - Space User Mission Profiles and Needs

Activity objective:

 Characterize the GNSS space user base and identify their needs based on broad GNSS space use mission data and an indepth understanding of representative space application performance.

Approach:

- a) Collect publicly available data on space missions using GNSS and form a common database
- b) Develop a GNSS Space Application Term List to support SUSG activities and user profiles generation.
- c) Consolidate GNSS space use needs based on engagement with the international GNSS space user community

Activity outcome:

- a) GNSS space user mission database
- b) GNSS Space Application Term List
- c) GNSS space use needs analysis

WP 3 - GNSS Space User Timing Requirements

Activity objective:

 Perform analysis to develop a GNSS space user timing requirement analysis and develop GNSS space user timing operational recommendations

Approach:

- a) Work to collect space user requirements for timing interoperability
- b) Work with WG-D and develop proposed timing interoperability solutions
- c) Present to SUSG for approval, rejection or modification
- d) Socialize ideas with international providers
- e) Action: Include/coordinate with other ICG time-related WGs

Activity outcome:

Development of space user timing capabilities and requirements; space user operations recommendations

WP 4 - GNSS SSV and lunar PNT systems to support lunar operations

Activity objective:

Work with GNSS providers and multilateral organizations, including the IOAG, and SFCG, to ensure <u>interoperability</u>, <u>compatibility</u>, and <u>availability</u> of GNSS and lunar PNT systems that can be <u>seamlessly employed together</u> from the Earth to the Moon

Approach:

- Establish necessary liaison roles with Space Frequency Coordination Group, ISECG, etc.
- Collect and document lunar use cases that require lunar GNSS or PNT
- Encourage and consolidate results of lunar flight experiments employing GNSS and lunar PNT systems
- Study and make recommendations to maximize compatibility, interoperability and availability of combined GNSS + lunar PNT "system of systems", including:
 - Coordination of frequencies and codes
 - Service volume definitions
 - Combined GNSS-lunar PNT architectures
 - Signal interoperability, compatibility and availability
 - Reference frames and timing

Activity outcome:

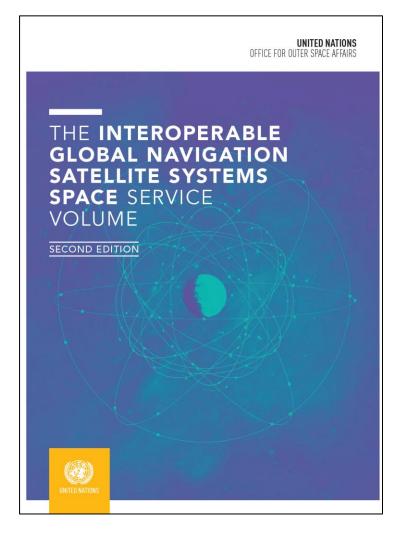
• Full attainment of an <u>interoperable,compatible</u>, and <u>available</u> GNSS/lunar PNT system of systems that can support the world's ever-expanding human and robotic space operations in transit, around and on the surface of the moon

WP 5 - GNSS Space Use Standards

Activity objective:

 Work with other organizations (e.g, IOAG/CCSDS) on space user standards that will improve GNSS SSV interoperability and acceptance as an international standard

Approach:


- Collect requirements from different space users communities
 - Space agencies, Scientific, Commercial, Institutional/Governmental (none military), Mega Constellations, Universities,
 Regulations for Space Debris
- Review of existing standards in different domains related to GNSS space usage
 - CCSDS (space agencies)
 - NMEA maritime applications
 - IGS (Scientific, Institutions/Organizations/Government, Industry)
 - RINEX for off-line processing
 - State Space Representation (SSR) Real Time processing (used for RT high accuracy positioning)
- Develop proposals for GNSS Space User Standards
- Socialize ideas with international providers
- Work requisite standards organizations to determine their interest in in proposed standards;
- Identify joint projects/opportunities in order to conduct tests/demonstrations in space (e.g. usage of Cubsats)
- Present proposed standards to SUSG for approval, rejection or modification;
- Submit formal proposal for GNSS Space User Standard to selected standardization body and support implementation of standard

Activity outcome:

Proposal for GNSS space user Standards

Committee on Short-Form SSV Booklet Publication

- SUSG created an ad-hoc Committee on Short-Form SSV Booklet Publication in Mar 2023 to respond to multiple requests for a condensed edition of the SSV Booklet published in 2018 and revised in 2021.
- **Objective**: Publish a short form of the 2nd edition SSV Booklet to fulfill need for a version that can be provided to non-technical audiences in multiple languages.
- Requirements:
 - Adapted from existing 2nd edition Booklet
 - 2. Length <25 pages
 - 3. Focused on applications and benefits, with emphasis on graphical content
 - 4. Able to be translated into multiple languages by UNOOSA*
 - 5. Able to be redistributed by UNOOSA and ICG members*
- Participants include representatives from ICG membership participating in the SUSG, including: China, ESA, European Union, India, Japan, Russia, USA
- Approach:
 - 1. Publish update at ION GNSS+ 2023 conference
 - 2. Publish full short form as an article in Journal of Navigation primary objective
 - 3. Summarize in trade publications/magazines, e.g., GPS World, Inside GNSS
- Status:
 - Committee membership established and two meetings held. Monthly meeting cadence agreed.
 - Presentation was given at ION GNSS+ 2023 conference in CGSIC forum
 - Next step is to begin outline and writing assignments for short-form article.

Work Plan Team Updates

Activity	Lead	Participation	POC
 WP1: Public availability of provider antenna/signal technical data and requisite models Meetings are held The main topics for discussion were advantage of including side lobes for SSV visibility Various options of antenna side lobe characterization were discussed. A White Paper was generated and disseminated to the working group for review, in order to explain the need for such information in a more detailed way 	India Vishwanath Tirlapur/Shilpa Meeting schedule: 1st Tue of month, 11:00 UTC	China Japan Europe USA	Xinuo Chang Makoto Tomitaka Werner Enderle Joel Parker
 WP2: GNSS Space User Mission Profiles and Needs Meetings are held WP2 workplan was reviewed and updated WP2 name was changed from GNSS space user mission data and profile to GNSS Space User Mission Profiles and Needs Team is working on existing GNSS mission database (i.e IOAG table) and drafting GNSS Space User Mission Profiles 	China Xinuo Chang Meeting schedule: Meetings: 1 st Wed of month, 12:00 UTC	USA Europe Japan	Joel Parker Giovanni Lucchi Masaya Murata
 WP3: GNSS space user timing requirement analysis and space user operations recommendations Meetings are held Discussed and agreed way forward based on: orbit types (LEO, HEO Lunar) Applications (Time Ref, PVT, POD) Missions analyzed per each region In order to explain the need for such inform in a more detailed way, a White Paper, was generated and disseminated for review Comments were provided to the interoperable GNSS Time recommendation from WG D 	Europe Erik Shoenemann Meetings: 1 st Tue of month, 12:00 UTC	USA China Japan India	Frank Bauer Xinuo Chang Satoshi Kogure Ghanshyam

Work Plan Team Updates

Activity	Lead	Participation	POC
WP4: GNSS SSV and lunar PNT systems to support lunar	USA	Russia	Nikolai Leonidov
operations	Frank Bauer	China	Xinuo Chang
• Accomplishments:		Japan	Masaya Murata
 Developed recommendation, approved at ICG-16, encouraging GNSS and lunar PNT teamwork to ensure the future attainment of an interoperable, compatible, and available PNT system of systems for lunar human and robotic operations 	Meetings: 1 st Thu of month	Europe	Werner Enderle
 Reached consensus on several lunar PNT operations characteristics 			
 Teams from ESA, JAXA, NASA & China provided in-depth descriptions of current lunar PNT planning 			
 Documented comprehensive set of Lunar PNT Mission Profiles, Use Cases, and Architectures 			
 Developed key lunar PNT definitions: cislunar space and shielded zone of the moon 			
 Coordination started with IOAG and SFCG liaisons to ensure interoperability, compatibility and availability of PNT signals in and on the moon 			
 Developed ICG-17 draft recommendation to conduct a Joint ICG-IOAG multilateral Workshop on Cislunar PNT 			

Work Plan Team Updates

	Activity	Lead	Participation	POC
WP5: GNSS space user Standards		Europe	Russia	Nikolai Leonidov
	 No meeting in 2023 so far 	Werner Enderle	USA	Nathan Esantsi
	 Intention is to re-start the activities in Nov 2023 		China	Xinuo Chang
	 Discussed and agreed way forward based on: 	Meetings: 2nd Tue of	Japan	Masaya Murata
	 Data Formats and protocols for observations User trajectory information Format and protocols for augmentation products 	month	India	Braj Bhushan Gupta
	• A document <i>called Overview - Space Standards for</i>			
	Navigation Draft V2 was generated and disseminated for review			
	 Interactions took place with some standardization organizations, in order to understand latest status CCSDS for orbit and attitude IGS RINEX WG for GNSS observations 			

Conclusions

- The ICG, via its WG-B Space Use Subgroup (SUSG), is working for greater representation of space user PNT needs.
- SUSG has published the 2nd edition of the Interoperable Multi-GNSS SSV booklet, which updates constellation data, adds example missions, and expands technical analysis.
- SUSG has adopted a Work Plan that features significant efforts in areas that need coordination:
 - Constellation Technical Data
 - User Mission Profiles
 - GNSS Space User Requirements for Timing
 - GNSS Space User Standards
 - Expansion of GNSS SSV to Support Lunar Operations
- ICG is working toward robust multilateral coordination to enhance the overall lunar PNT architecture and all aspects of interoperability.