Data and Applications of Space Weather Payloads onboard of BDS Satellites

Liu Kai
University of Science and Technology of China
2023-10-17 Madrid, Spain
CONTENTS

01 Space Weather and GNSS
02 The Solar Cycle 25 is Here
03 Space Weather Payloads on BDS
04 Proposal and Discussions
Space Weather and GNSS
1. Space environment disruptions near Earth, caused by solar activities
2. Possible consequences of space weather events to GNSS
3. Incident Electrons and Charging Events

- Incident Electrons
- Incident ions
- Sunlight
- Sheath
- Back-scattered Electrons
- Secondary Electrons
- Photo-Emission
- Isolated Conductor
- Conduction
- Deep Dielectric
- Charging
- Structure ‘Ground’ V_a

Surface Charging

Inner Charging

Interference
The Solar Cycle 25 is HERE
The Solar Cycle 25 is Here

1. Sun's activity is higher than expected

International sunspot number S_{sun}: last 13 years and forecasts

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2023 October 1
The Solar Cycle 25 is Here

2. Solar activity-Geomagnetic storm-Increasing atmospheric density-Satellites Decay

![Solar image]

![Geomagnetic storm image]

![Graph showing atmospheric density and satellite decay]

2023/04/21 20:36

-113m/day
-168m/day

2023 Year, UT
3. Extensive interference and interruption of GNSS navigation signals on the dayside caused by L-band solar radio burst on May 4th, 2023
The Solar Cycle is Here

4. Increasingly active solar activity
Space Weather Payloads on BDS
1. Energetic Electron Detection Packages

<table>
<thead>
<tr>
<th>Payload</th>
<th>Characteristic Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-energy Electron Spectrometer (MES)</td>
<td>Energy: 50~600keV, FOV: 30°×180°, Geometric factor: <~2.0×10^{-3}</td>
<td>Measure the energy spectra and flux changes of medium electrons in the outer radiation belt.</td>
</tr>
<tr>
<td>High-energy Electron Detector (HED)</td>
<td>Energy: 0.5~3.0MeV, FOV: 30° cone-angle, Geometric factor: <~1.0×10^{-2}</td>
<td>Measure the energy spectra and flux changes of high electrons in the outer radiation belt.</td>
</tr>
<tr>
<td>Deep Dielectric Charging Monitor (DDCM)</td>
<td>Charging Voltage: -2.5 kV to 0 V, Charging Current: 0.01-50 pA</td>
<td>Measure the deep dielectric charging current and voltage.</td>
</tr>
</tbody>
</table>
2. Space Plasma and Satellite Surface Charging Monitor

<table>
<thead>
<tr>
<th>Payload</th>
<th>Characteristic Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Energy Electron/Ion Spectrometer</td>
<td>Energy: 0.1~15 keV
FOV: 2π
Resolution: <15%±2%</td>
<td>Detect parameters of in-situ electrons and ions, such as energy, flux, density and velocity.</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>Range: -65000 nT ~ +65000 nT
Noise: 10 nT</td>
<td>Measure the environmental magnetic field around the satellites.</td>
</tr>
<tr>
<td>Radiation dosimeter</td>
<td>Radiation dosage: 0~10^7rad</td>
<td>Measure total radiation dose to evaluate the lifetime of satellite.</td>
</tr>
<tr>
<td>Surface potential detector</td>
<td>Surface potential: 0.1 ~10 kV</td>
<td>Monitor the satellite’s surface potential.</td>
</tr>
</tbody>
</table>
Space Weather Payloads on BDS

3. Data of HED (High-energy Electron Detector)

Highly Energy Electron Flux (X: 0.2–0.3MeV)

The red arrows indicate times of four CME (Coronal Mass Ejection) events
4. Data of LEIS (Low Energy Ion Spectrometer)

2021-09-30 to 2021-10-01
ori-nuv Ch5 Elevation Index = total Diff Energy Flux

A and B: Surface charging events
C: Characteristic for injection of charged particles
4. Analysis of the Surface Charging Events

- Spectrum data of both Ions and Electrons are from the same satellite

- The higher electron fluxes appear from the midnight to the dawn side, which may indicate that the electron injection from the magnetotail mainly occurs at the dawn side

- The weakening of the substorm and the weakening of the electron flux observed by the electron detector on the dawn side may indicate a correlation in-between.
5. A prediction model for high-energy electrons in radiation belt

- **Model Principle:** Delayed correlation between intermediate and high-energy electrons

- **Model Equations**

 \[
 \frac{dj}{dt} = S + L \\
 j(t + \Delta t)_{\text{high}} = j(t)_{\text{high}} + \Delta t(S + L) \\
 S = C_1 C_2 \left(\frac{j(t)_{\text{low}}}{j(t)_{\text{low}} + \Delta t}\right)^b + C_3 j(t - \Delta t)_{\text{high}} \\
 L = -C_4 j(t)_{\text{high}} \\
 g = \log_{10} \left[j(t)_{\text{high}} \right] - \log_{10} \left[j(t - \Delta t)_{\text{high}} \right] \\
 \log_{10} \left[j(t + \Delta t)_{\text{high corrected}} \right] = \log_{10} \left[j(t + \Delta t)_{\text{high}} \right] (1 + \bar{g})
 \]
Model Results:
The prediction efficiency and accuracy are both very good.
Proposal and Discussions
Proposal and Discussions

- **Joint response to catastrophic space weather events**

- We should work together to prevent possible damages from severe space weather events to our GNSS satellites

- The workshops for space weather events could be conducted in ICG

- Data products, models and forecast outputs could be shared and discussed in ICG.

- A platform, such as a website, could be built for public to study the impact for space weather events to GNSS
Thank you

http://en.beidou.gov.cn