

NavIC Multipath Classification Using Deep Learning

Dr. Ashish Shukla

Indian Space Research Organization (ISRO)

Introduction

- NavIC (Navigation with Indian Constellation) is a constellation of GEO and GSO satellites which may experience different kind of multipath due to their orbits.
- NavIC receivers measure pseudo-ranges, carrier-ranges and Doppler observables.
- Pseudo-range measurements are absolute in nature, robust and therefore more widely used for the positioning purposes.
- However, pseudo-range measurements are more prone to multipath which is usually in meters.
- On the other hand, carrier-range measurements are very precise and experience very less multipath which is usually in mm level.

A Deep Learning Approach

- Accuracy and robust position information from GNSS receivers is one of the challenges in multipath affected scenarios
- Although, if receiver has the knowledge of Line of Sight (LOS), Multipath and Non Line of Sight (NLOS) signals, degradation in position accuracy due to the multipath affected signals can be addressed
- Previously, the study conducted used unsupervised machine learning algorithms to classify signals as LOS, multipath and NLOS based on NavIC data collected at Dehradun, India.
- Present study uses Deep Learning model for classification of NavIC multipath.

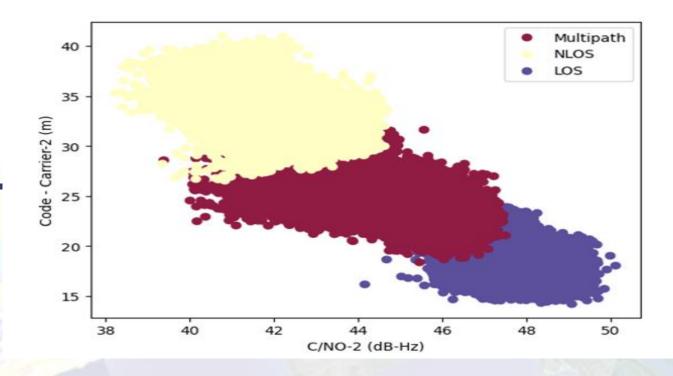
Code Minus Carrier Observable for Multipath

Equations for Code (ρ) and Carrier Phase (\emptyset) observables are as follows:

$$\rho = [r + I + T] + c(\delta t_u - \delta t^s) + MP + \varepsilon_{\rho}$$

$$\emptyset = \lambda^{-1}[r - I + T] + f(\delta t_u - \delta t^s) + N + MP + \varepsilon_{\emptyset}$$

$$\rho - \emptyset = CMC = \rho - \emptyset = 2I + N + MP + (\varepsilon_{\rho} - \varepsilon_{\emptyset})$$


Code Minus Carrier (CMC) after subtracting 2 times ionosphere delay is obtained as follows assuming N will remain constant throughout:

$$\rho - \emptyset = CMC = \rho - \emptyset = MP + (\varepsilon_{\rho} - \varepsilon_{\emptyset})$$

Multipath Classification using Unsupervised Learning

Clustering using Mini Batch K-means was done to generate multipath labels

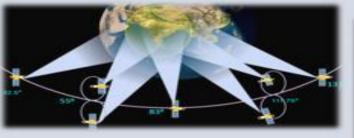
Classification Accuracy using ANN

NaviC PRN 2 NaviC PRN 4

CLASSIFIER	TESTING ACCURACY	CLASSIFIER	TESTING ACCURACY
KNN	68.47%	KNN	68.47%
SVM	85.74%	SVM	85.73%
RF	67.82%	RF	68.43%
NB	84.41%	NB	83.23%
LR	82.68%	LR	81.22%
ANN	95.09%	ANN	94.37%

PRN-2 & 4 Accuracy with 5-Fold Cross-Validation

Generated labels were used for training of ML and DL Models


Conclusion

- Multipath labels were generated using Unsupervised Machine Learning.
- Deep learning model is implemented for NavIC multipath classification using the generated labels.
- After comparison with other models it is found that ANN performs better for NavIC multipath classification.

