

Update on NavIC Signal Monitoring Receiver and The Advantage of NavIC L1-SPS

Saumi S. Rohan S. Urdhwareshe Saurabh Bhalla Rakesh Kr. Bijarniya Sagar Subudhi

Space Applications Centre Indian Space Research Organisation Ahmedabad, India

- Recently launched NavIC NVS-01 (GEO) satellites has introduced NavIC L1-SPS service along with the legacy L5 and S services.
- Payload Coherency Test Receiver used for the ground testing of NVS-01 satellite has been upgraded for the signal-in-signal monitoring of NVS-01 signals and is successfully deployed at ISRO Navigation Centre (INC).
- The receiver was used successfully for In-Orbit Testing of NVS-01 satellite and initial configuration and is in operation for continuous monitoring of the signal-in-space.
- The receiver firmware is also configurable for the processing of various other open GNSS signals with variety of modulation schemes and data formats.

Signal Monitoring Rx Specifications

Parameter	Specifications
Number of Channels	26
Signal Support	L1 SPS signal L5/S SPS Other Open GNSS signals in L5/S/L1 Band
Sensitivity	Acquisition : 32 dB-Hz C/No Tracking : 28 dB-Hz C/No
Anti-jamming Capability	Narrowband interference mitigation and Pulse blanking and notch filtering
Individual Code Phase Accuracy	Better than 10 cm (> 44 dB-Hz C/No)
Individual Carrier Phase Accuracy	Better than 10 mm (> 44 dB-Hz C/No)
Theoretical performance	Within 10 %
Timing Mode	Time Synchronization through external 1 PPS as well as reference clock
External Interface	RF Input 1-PPS Input and Output External Reference Clock (10 MHz) Data Communication Interface (USB-UART x2)
Configuration and Commanding	User defined Channel Configuration and PRNs Signal-wise

Performance of Signal Monitoring Receiver for NavIC SPS with SIS

Theoretical Jitter Performance Comparison

NavIC L1 SPS Advantage

- Newly introduced NavIC L1-SPS signal has interoperability with other GNSS L1 civilian signals. The signal has novel SBOC modulation with IZ-4 PRN codes, novel LDPC as well as BCH encoding schemes offering unique advantages.
- Being regional system giving continuous availability along with improved signal performance, NavIC L1 SPS signal offers advantages.
- NavIC system provides Ionospheric grid corrections at 5°x5° grids at 350 km altitude which gives very accurate Ionospheric corrections.
- In addition to this, NavIC has introduced NeQuick-N model for Ionospheric delay modeling in L1-SPS signal.
- This makes usage of NavIC L1-SPS signal immensely advantageous in multi-GNSS single frequency L1 receiver to get improved position accuracy.
- It also removes the need of having an additional SBAS channel only for Ionospheric corrections over Indian region for receiving the error correction values.

NavIC L1 SPS Signal

S. No.	Parameter	Specifications
1	Frequency Band	1575.42 MHz +- 12 MHz
3	Bandwidth	24 MHz
4	Modulation	Synthesized Binary Offset Carrier (SBOC) Pilot(Power: 58.18%): BOC(6,1) & BOC(1,1) Data(Power: 41.82%): BOC(6,1) BOC(1,1)
5	Ranging Codes	Primary: Interleaved Z4 (IZ4) Linear Sequence Overlay: Truncated Z4-Linear Sequence
6	Symbol Rate	100 sps
7	Frame Format	18 sec Master Frame SF1: 52 sym., SF 2: 1200 sym., SF 3: 548 sym.
8	Channel Code	SF-1: BCH(52,9) SF-2/SF-3: ½ Rate LDPC
9	Navigation Parameters	Primary Bits: 576
10	Ionospheric Messages	Grid based Ionospheric corrections and Klobuchar model coefficients

Performance with NavIC L1 SPS

Improved position accuracy is observed with NavIC L1 SPS because of ionospheric grid corrections

Conclusion

- The Signal Monitoring Receiver has been successfully used in In-Orbit Testing of NVS-01 satellite.
- The Receiver is deployed and under operations at NavIC Signal Monitoring Stations (INC).
- The Receiver is configurable for signals with modulations:
 - BPSK(n)
 - BOC(m,n)
 - MBOC
 - Hence can be configured to cater other signal monitoring requirements.
 - NavIC L1-SPS signal offers significant advantage in Multi-GNSS L1 positioning receiver because of Ionospheric grid corrections as well as advanced features introduced in signal.

Thank You