

Modified CEMIC Scheme for New Service Signals

VIJAY SINGH BHADOURIA

DHAVAL UPADHYAY

Indian Space Research Organization (ISRO)

18th , October, 2023

Overview

- NVS-01 is now transmitting interoperable service signal in L1 band.
- Study on multiplexing additional new service signals in L1-band with the existing NavIC Synthesized Binary Offset Carrier (SBOC) signal to transmit it through common payload hardware chain is considered.
- The composite signal must have constant envelope to operate the transponder at saturation with maximum efficiency.
- Congestion in L1-band in terms of other GNSS signals is higher than other RNSS bands.
 - It further poses difficulty in coordination of the centre frequency of the new service signal.
- For maintaining interoperability, change in the modulation and frequency of NavIC SBOC signal in L1-band will not be permitted/desirable.
- The data and pilot component of NavIC L1-band signal (SBOC) are multi-level in nature.
 - It posses additional challenge in terms of multiplexing operations.

Hence, a suitable Modified Constant Envelope Multiplexing with Intermodulation Construction (CEMIC) method is devised to incorporate:

- <u>Multi-frequency signals (to exploit frequency diversity) for minimization of inter- and intra-</u> system interference.
- <u>Multi-level signals for supporting backward compatibility (receiver transparency) to the</u> <u>existing SBOC signal in NavIC L1-Band.</u>

- Proposed MCEMIC has highest multiplexing efficiency and currently the state-ofthe-art scheme for single frequency BCS signal^{\$}.
- The same is extended for multi-level & single/multi-frequency signals multiplexing scheme.
- MCEMIC is a waveform Domain Processing for generating constant envelope signal.
- Targeted to provide flexibility in allocating power sharing between signals.
- Using a new centre frequency (constraint to have some discrete values due to existing SBOC signal design) to provide frequency diversity.

Proposed method can be generalized to incorporate additional signals in L1-band.

^{\$} Bhadouria Vijay Singh, Upadhyay Dhaval, Majithiya Parimal, & Bera Subhash Chandra (2022); Modified CEMIC scheme for multiplexing signals over single frequency band. *NAVIGATION, 69*(3). https://doi.org/10.33012/navi.528

Case Study: NavIC L1 Band Signals				
Signal Name	Power Sharing (%)	Phasing	Relative frequency Offset (MHz) @	Modulation Type
SBOC- Data	18.3 ^{\$}	90°\$	0	MBOC (6,1,1/11)
SBOC- Pilot	24.7 ^{\$}	0°\$	0	
New Service Signals	7.9	0°	18.414	BPSK (2)
	7.9	0°	18.414	
	23.7	90°	18.414	
IM Components	17.5	0°/90°	18.414	-

^{\$} Relative power sharing and phasing is preserved for the NavIC SBOC signal.
[@] Frequency Offset is with respect to the frequency of 1575.42 MHz.
<u>Note:</u>

• Signals are to be generated at a sampling rate of 147.312 Msps

MCEMIC Performance

LUT based Scheme Performance

ISRO

