

Doppler Positioning with LEO Satellites and Combination with NavIC

Vimalkumar BHANDARI, Nishkam JAIN, Puneet Kumar AGRAWAL, Raksha RAI

Space Applications Centre Indian Space Research Organisation Ahmedabad, India

- Overview of LEO constellations
- Doppler-based positioning and simulation
- DOP Analysis
- Types of positioning
 - NavIC only code-based positioning
 - LEO Doppler-based positioning
 - NavIC code + LEO Doppler-based positioning
 - NavIC + LEO code-based positioning
- Summary

• Large four LEO constellations

Details*	Iridium NEXT**	OneWeb**	Starlink**	Kupier**
No. of Satellites	75	720	~3900 (April 2023)	3,236
Services	Resilient Timing (STL) by Satelles	Broadband	Broadband	Broadband

- Commercial PNT:
 - Xona Space Systems**
 - Low Earth Orbit Navigation System (LEONS) **

* Based on information available in the public domain, in interest of public research. ISRO has no authority/responsibility on this information.

** Commercial entities, ISRO has no ownership of any copyright/trademark materials

LEO & Doppler Observations

- Low Earth Orbit (LEO) satellites
 - High transmission power for broadband use
 - Low altitude and latency
 - Reduced launch cost
 - Use of COTS components
 - Atomic clock is not a must
 - Higher observability & redundancy in number of satellites
 - Indoor penetration
- LEO constellations Signals of Opportunity
- Although signal structure is unavailable in public domain, Doppler observations can be obtained
- In GNSS-denied environment, positioning can be done, albeit, with lesser accuracy

- Uses only Doppler observations from LEO satellites
- Initial coarse position and timing is required
- Satellite position error has no big impact
- Navigation solution is very sensitive to user clock drift, satellite velocity errors
- Example shows rapid variations in Doppler of an Iridium NEXT LEO satellite

Simulations and Types of Positioning

- Simulation software developed to accept ephemeris information of **OneWeb** (LEO under consideration) and **NavIC**
- Software helps generate
 - Doppler observations with random noise & no biases
 - Satellite position & velocity
- Analysis is carried out using four types are combinations:
 - 1. NavIC only code-based positioning
 - 2. OneWeb Doppler-based positioning
 - 3. Hybrid of NavIC code + OneWeb Doppler-based positioning
 - 4. Combination of NavIC + OneWeb code-based positioning

Dilution of Precision (DOP) analysis

#1 Simulation - NavIC only Code-based solution

- Code-based solution with only 7 NavIC satellites
- No biases in observations

- Doppler-based solution using OneWeb satellites
- Large Doppler-DOP leads to increase
- in position error <u>ا ع</u> Position Error μ_{2D} = 8.62 m σ_{2D} = 10 m 2D RMS = 10m 2D 10000 20000 30000 40000 50000 60000 70000 80000 Position Error (m) 05 05 05 $\mu_{\rm 3D}$ = 10.5 m $\sigma_{\rm 3D}$ = 11.7 m 3D RMS = 11.7m B 10000 20000 40000 50000 60000 70000 80000 30000 TOW (seconds)

#3 Simulation NavIC Code + LEO Dopplerbased Navigation Solution

Combination of NavIC Code + OneWeb Doppler observations

#3 Re-run Simulation with 4 NavIC satellites + LEO Doppler – Indoor Scenario

• Limited code observations + OneWeb Doppler observations

#4 Simulation NavIC + LEO Code-based **Navigation Solution**

LEO Pseudorange-based Positioning

- Assumption code observations are available from OneWeb •
- Improvised solution •

Summary

- Doppler-DOP of LEO Doppler-based positioning is very large and ranges between 300 to 400; position accuracy is poor
- When LEO Doppler observations are processed along with NavIC code observations, hybrid solution is on par with NavIC only code solution
- Contribution of Doppler observations in navigation solution is small when Code observations are available
- Standalone Doppler-based solution is recommended in GNSS-denied environment
- Combined code observations from NavIC and LEO provide improvised solution
- LEO constellations can compliment NavIC positioning

Thank you