

International Committee on Global Navigation Satellite Systems

NeQuick-N performance in NVS-01

Megha Maheshwari & Gurpreet Singh

INDIAN SPACE RESEARCH ORGANIZATION (ISRO)

- > Ionosphere correction models for NavIC
- Inclusion of NeQuick-N model from NVS-01 onwards
- > Description of NeQuick-N broadcast parameters
- Performance of NeQuick-N with NVS-01 measurements
- Conclusion

• Ionospheric Corrections for Single Frequency Users (1st generation: 1A - 1I)

- Grid Based (Indian region and around)
- Klobuchar-like Co-efficients
- Additional Ionospheric Corrections for Single Frequency (L1) Users (NVS-01 onwards)
 - NeQuick-N: Three coefficients to compute Effective Ionization level (Az)
 - Based on NeQuick model

Grid Based Ionospheric Corrections (IIM- Indian Ionospheric Model)

- NavIC single frequency users can operate either on L5 or S frequencies
- Grid Based Corrections to provide comparable accuracy for single frequency L5 users
- Currently, servicing 90 grids points over Indian region (segmented into 6 regions with 15 points in each) and broadcasted every 5 min.

Co-efficient (Klobuchar like) Based Ionosphere Corrections

- 8 coefficients (α_n , β_n ; n = 0 to 3), are provided in sub-frame 4 of the Navigation data.
- α_{n} are the coefficients of a cubic equation representing the amplitude of the vertical delay
- $-\beta_n$ are the coefficients of a cubic equation representing the period of the model

-Co-efficients are generated and uplink once a using TEC derived from 16 reference stations (IRIMS)

Inclusion of NeQuick-N model from NVS-01 onwards

- Semi-empirical model
- Requires less bits to transmit the message
- Incorporates latest change in earth magnetic field
- Uses climatological/average ionosphere data to define ionosphere.
- Used data ingestion over Indian land mass to estimate coefficients.
- Used interpolation technique to generate coefficients for secondary service area.
- GNSS receiver compatibility :
 - The user (receiver) algorithm for NavIC NeQuick (NeQuick-N) Model and NeQuick-G (GALILEO) are the same to maintain compatibility for the user Receiver

Hence ionospheric message named NeQuick-N (NeQuick Model for NavIC) is included from NVS-01 onwards

Coefficients are transmitted at L5 frequency (maintain legacy)

Provision of three sets of broadcast coefficients for different regions

➤ The structure is define to accommodate the future expansion of NavIC constellation

Provision of broadcasting different sets of the coefficients in a day

Provision to protect users from any anomaly in broadcast data using Flag

➢ User algorithm is same as Galileo ionosphere model to maintain the receiver compatibility

S. No.	Parameter		
1	Maximum MODIP coverage		
2	Minimum MODIP coverage		
3	Maximum Longitude coverage		
4	Minimum Longitude coverage		
5	Effective Ionization level 1st order		
6	Effective Ionization level 2 nd order		
7	Effective Ionization level 3 rd order		
8	Ionosphere Disturbance Flag		
9	The Issue of Data NeQuick-N		

Typical message content of NeQuick-N (From NavIC SIS ICD for L1 signal)

NeQuick-N with NavIC measurements

- Line of sight slant delay for each NavIC reference receiver
- GEO and GSO satellites
- Overall error assessment

NeQuick-N with GIM

- Vertical delay computation at GIM grid points
- Grid map generation over NavIC service area

> NeQuick-N with NeQuick-G

- SD using NeQuick-G broadcast parameters
- SD using NeQuick-N broadcast parameters
- NeQuick model limitation for NavIC.

location

International Committee on Global Navigation Satellite Systems

NVS-01 (Second Generation, GEO)

Comparison for NVS-01 (GEO) and 1I (GSO)

IRNSS-1I (first Generation, GSO)

error correction using NeQuick-N wrt NavIC measurements

Solar activity index

DOY, 2023	F10.7
	(SFU)*
24-June	166.5
25-June	160.3
26-June	163.4

* High Solar Activity

- Moderate Geo-magnetic activity (Dst:-30nTs)
- All the corrections (Grid, Klobuchar-like & NeQuick-N are broadcasted on L5; User to apply appropriate scale factor for his Line of Sight (LOS)

NeQuick-N with NeQuick-G

Statistics wrt NavIC Measurements

DOY 148, 2023	% Error	Mean
	correction	Error (m)
NeQuick-N	75.37	0.695
NeQuick-G	74.4	1.062
NeQuick-F10.7	70.2	2.820

NeQuick-N with GIM over NavIC service area

- JPL derived GIM data is used for comparison.
- VD is computed using broadcast NeQuick-N coefficients.
- Different sets of coefficients are used based on the MODIP and Longitude coverage area.
- Matching well with GIM over primary service area
 - The difference is more at the edges of secondary service area.

- NeQuick-N coefficients are broadcasted from NVS-01 onwards.
- The coefficients are broadcasted for three different regions.
- Different techniques are used to generate coefficients at three different regions.
- Message structure is flexible to accommodate future navIC constellation expansion
- There is a provision to broadcast ionosphere disturbance Flag value and multiple sets of coefficients over a day.
- NeQuick-N performance is satisfactory with NavIC measurements as well as with GIM measurements

Thank You

