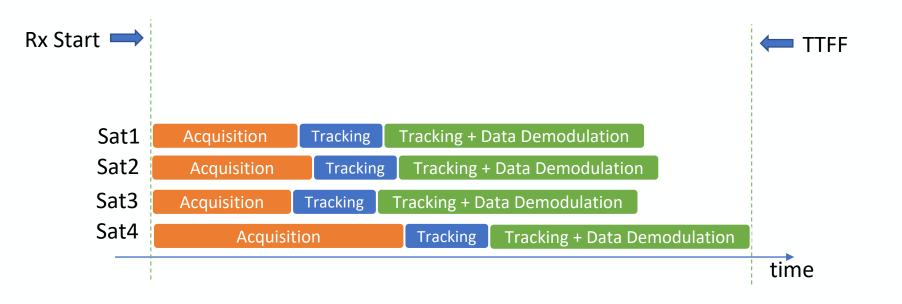


The Improvements seen from Galileo's Signal Message I/NAV change

Galileo G1 Project Office

→ THE EUROPEAN SPACE AGENCY

Presentation to UN ICG-17, WG-S


17/10/2023

ESA UNCLASSIFIED - Releasable to the Public

Introduction

- Time to First Fix (TTFF) in GNSS receivers is one of the main performance key performance parameters for positioning.
- The TTFF value is mainly impacted by Signal Acquisition and Data Demodulation time for each satellite.
- New features in E1B help improve the **Data Demodulation** step, with direct impact on TTFF.

I/NAV Improvement - Content

- I/NAV improvement has been designed to improve the data delivery of Galileo I/NAV along 3 axis
 - Improved Time to First Fix fast retrieval of navigation data
 - Improved data demodulation robustness demodulate nav data also in challenging environment
 - <u>Time ambiguity resolution</u> for users with coarse time information (+/- 3 sec) to access Galileo system time without need to demodulate it from navigation message
- Implementation solution selected
 - 1. Reduced Clock and Ephemeris (redCED)
 - 2. <u>Reed Solomon</u> (RS)
 - 3. Secondary Synchronisation Pattern (SSP)

Deployment in Galileo Constellation is complete 20 satellites are broadcasting I/NAV improvement

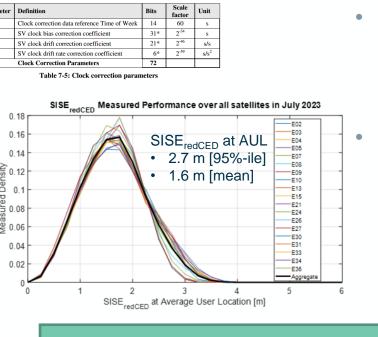
It's there – use it!

Public SIS-ICD contains I/NAV impr. spec since 01/2021

The European space agency → the European space agency

Feature 1: Reduced Clock and Ephemeris Data

→ THE EUROPEAN SPACE AGENCY


Basic Idea: Reduce the number of information required to generate a position fix (at cost of accuracy)

I/NAV Clock and Ephemeris Parameter

428 bits

- are spread over 4 I/NAV words (I/NAV-1, -2, -3, -4)
- all 4 I/NAV words need to be received (with same IODnav) to establish a position fix

Parameter	Definition	Bits	Scale factor	Unit	Parameter	Definition
M ₀	Mean anomaly at reference time	32*	2-31	semi-circle**	t _{0c}	Clock correction data
Δn	Mean motion difference from computed value	16*	2-43	semi-circle/s**	a _{f0}	SV clock bias correcti
-	Eccentricity	32	2-33	dimensionless	an	SV clock drift correcti
e A ^{1/2}	Square root of the semi-major axis	32	2 2 ⁻¹⁹	m ^{1/2}	a _{f2}	SV clock drift rate cor
OMEGA ₀	Longitude of ascending node of orbital plane at weekly epoch***	32*	2.31	semi-circle**	-	Clock Correction Par Table 7-5: C
i ₀	Orbit inclination angle at reference time	32*	2-31	semi-circle**	1	
OMEGA	Argument of perigee	32*	2-31	semi-circle**	1	
OMEGADOT	Rate of change of right ascension	24*	2-43	semi-circle/s**	1	SISE
IDOT	Rate of change of inclination angle	14*	2-43	semi-circle/s**		.18 r
Cuc	Amplitude of the cosine harmonic correction term to the argument of latitude	16*	2-29	rad		
Cus	Amplitude of the sine harmonic correction term to the argument of latitude	16*	2-29	rad	0	.16 -
Crc	Amplitude of the cosine harmonic correction term to the orbit radius	16*	2-5	m		.14
C _{rs}	Amplitude of the sine harmonic correction term to the orbit radius	16*	2-5	m	Measured Density	.12
C _{ic}	Amplitude of the cosine harmonic correction term to the angle of inclination	16*	2-29	rad	dDe	0.1
C _{is}	Amplitude of the sine harmonic correction term to the angle of inclination	16*	2-29	rad	onrec	.08
t _{0e}	Ephemeris reference time	14	60	s	aa	
Total ephemeris bits					₩ 0	.06
Table 7-2: Ephemeris parameters						.04
					0	02

Reduced Clock and Ephemeris Parameter

- Idea: reduce number of CED parameters and bit allocation to squeeze all information into a single I/NAV word (<u>122 bits</u>)
- RedCED
 - are derived <u>on-board</u> from full CED

122 bits

- provide degraded accuracy compared to CED
- User exploitation:
- First position fix with redCED

Parameter	Number of bits	Scale factor	Reference value	Unit	
ΔA_{red}	5*	2 ⁸	29600000	meter	
exred	13*	13* 2-22 0		dimensionless	
eyred	13*	2*22	0	dimensionless	
⊿i _{ored}	17*	2-22	56/180	semi-circle**	
Ω_{ored}	23*	2-22	0	semi-circle**	
λ_{ored}	23*	2*22	0	semi-circle**	
afored	22*	2-26	0	S	
afired	6*	2-35	0	s/s	
Total bits	122				

ESA UNCLASSIFIED – Releasable to the Public

Feature 2: Reed Solomon Coding of the Clock and Ephemeris Data

Introduction of <u>Reed-Solomon Clock and Ephemeris Data</u> (RS CED) to the I/NAV message (E1-B)

- RS coding provides
 - Correction of residual errors <u>AND</u> recovery of erased information
- 4 different RS CED word are generated <u>on-board</u> (obtained from CED), per sub-frame 2 RS CED words are broadcast
- Any set of four different error free received (RS) CED words recovers the CED
 - Examples:

CED recoverable: all CED words available

CED *not* recoverable: CED 4 is missing doublets are not useful

CED recoverable:CED not recoverable:CED 2 & 3 can be recovered by
using joker words RS CED 1 & 2four different words are

CED recoverable: four *different* words are available

RS-CED is the "Joker" Word (can replace any CED word)

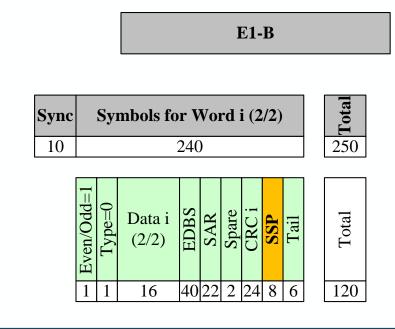
ESA UNCLASSIFIED – Releasable to the Public

CED/

RS ED 1

CED 4

Feature 3: Secondary Synchronization Pattern



Introduction of <u>Secondary Synchronization Pattern (SSP)</u> into the I/NAV message (E1-B) supports reconstruction of the GST, without the need to demodulate the navigation message

	SSP1	SSP2	SSP3
Plain SSP configurations	00000100	00101011	00101111

- SSP replaces spare bits on E1-B
- Required level of coarse synchronisation
- Ambiguous Time Of Week (TOW) information can be retrieved
 - SSP1 detected \rightarrow TOW modulo 6s = 1s
 - SSP2 detected \rightarrow TOW modulo 6s = 3s
 - SSP3 detected \rightarrow TOW modulo 6s = 5s

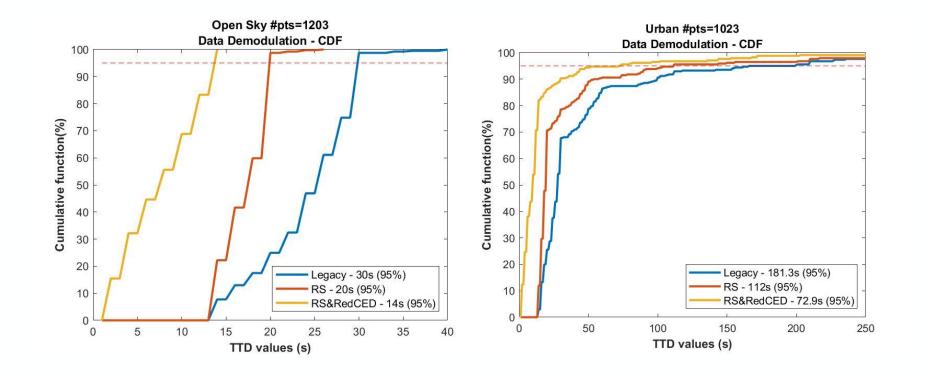
Enables fast GST recovery (modulo 6 seconds) already at symbol level

Test Campaign

Rural (Nieuw Vennep)

Urban (Rotterdam)

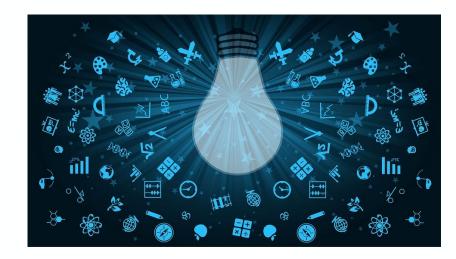
ESA UNCLASSIFIED – Releasable to the Public


💳 💶 🖬 🚛 💳 🕂 📲 🧮 💶 📲 📰 🛻 🚳 🖿 📲 🚍 🛶 🚳 🛌 📲 🚼 💶 📾 🐏 🕍 🔸 THE EUROPEAN SPACE AGENCY

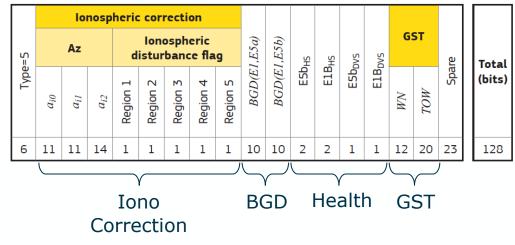
ESA UNCLASSIFIED – Releasable to the Public

8

Campaign Results – RS and RedCED Performance


eesa

Important Note



In order to fully benefit from RS-CED, specific attention needs to be paid to W05 handling:

- Do not wait to demodulate W05, but
- Derive healthy SIS status from the presence of W16. W16 is only broadcast when SIS is Healthy
- BGD: retrieve from previously stored data information is stable over long time
- Galileo System Time: recover from SSP or from W05 decoded from any other satellite
- Ionospheric correction data: retrieve from W05 decoded from any other satellite or omit at the cost of higher ranging error

Word Type 5: Ionospheric correction, BGD, signal health and data validity status and GST

ESA UNCLASSIFIED – Releasable to the Public

Summary

- I/NAV improvement does provide Improved
 - Time to First Fix
 - Data Demodulation Robustness
 - Time Ambiguity Resolution
- Deployment within Galileo constellation is completed 20 satellites are now broadcasting the improved message on E1-B
- All necessary information for implementation are contained in **Galileo OS SIS-ICD v2.0**
- Benefits
 - RS-CED improve TTFF and data error correction
 - RedCED greatly improve TTFF as a trade-off with reduced precision
 - **SSP** improves time retrieval in receivers where the system time is coarsely available
- Galileo program does support receiver and chipset manufacturers by "I/NAV improvements implementation testing campaign"

ESA UNCLASSIFIED - Releasable to the Public

Thank you for your attention!

Questions?

ESA UNCLASSIFIED – Releasable to the Public