

QZSS Navigation Message Authentication Service Status

Quasi-Zenith Satellite System, Japanese Regional Navigation Satellite System

17th ICG WG-S

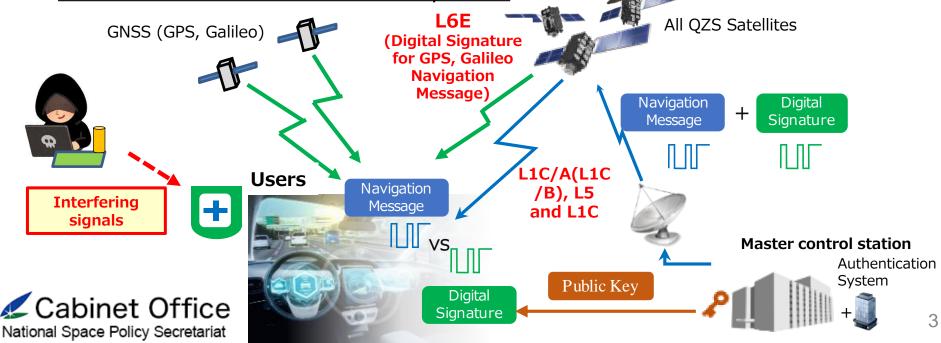
17 October, 2023

Motohisa KISHIMOTO

Senior Coordinator QZSS Strategy Office National Space Policy Secretariat Cabinet Office, Government of Japan

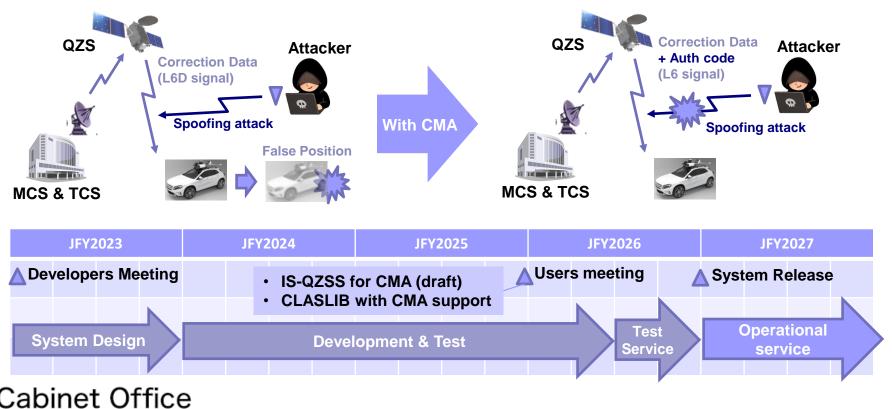
NMA Signals

Navigation Message Authentication by QZSS


- Uses <u>L1C/A(C/B)</u>, <u>L1C and L5</u> to authenticate <u>QZSS positioning signals</u>
- Also <u>Uses L6E signal</u> to authenticate <u>GPS and Galileo</u> positioning signals

Signal	Frequency MHz	Service	Compatibility	QZS-1R	QZS-2/4	QZS-3
				IGSO	IGSO	GEO
L1C/A	1575.42	Positioning	Complement GPS	\checkmark	\checkmark	\checkmark
L1C		Positioning	Complement GPS	~	\checkmark	\checkmark
L1C/B		Positioning	Complement GPS	\checkmark	-	-
L1S		Augmentation(SLAS)	DGPS (Code Phase Positioning)	✓	\checkmark	\checkmark
		Messaging	Short Messaging	\checkmark	\checkmark	\checkmark
L1Sb		Augmentation(SBAS)	SBAS (L1) Service	-	-	\checkmark
L2C	1227.60	Positioning	Complement GPS	\checkmark	\checkmark	\checkmark
L5 I/Q	1176.45	Positioning	Complement GPS	\checkmark	\checkmark	\checkmark
L5S		Experimental(L5 SBAS)	L5 SBAS (DFMC)	\checkmark	\checkmark	\checkmark
L6D	1278.75	Augmentation(CLAS)	PPP-RTK (Carrier Phase Positioning)	\checkmark	\checkmark	\checkmark
L6E		Augmentation(MADOCA)	PPP, PPP-AR (Carrier Phase Positioning)	\checkmark	\checkmark	\checkmark

- QZSS Navigation Message Authentication service, QZNMA, will launch in JFY2024 to enhance the resilience against spoofing attacks.
- Navigation messages in the following signals are authenticated with using Elliptic Curve Digital Signature Algorithm (ECDSA P256).
 - QZSS signals (L1C/A(C/B), L1C, L5) are directly protected by self-authentication
 - GNSS signals (GPS: L1C/A, L1C, L5, Galileo:E1b, E5a) are protected by crossauthentication (L6E)
- The Interface Specification (IS-QZSS-SAS-001)(draft-002) is now available on our website (https://qzss.go.jp/en/technical/ps-is-qzss/is qzss sas agree.html), and trial transmission of L6E has started since the end of July 2023.



QZSS CLAS Authentication

National Space Policy Secretariat

- Correction Message Authentication (CMA) will be provided for QZSS CLAS.
- It increases the resilience of high-accuracy positioning against spoofing.

