

FutureNAV LEO-PNT In-Orbit Demonstration and Future System Perspectives

International Committee on GNSS Workshop on Low Earth Orbit (LEO) PNT Systems

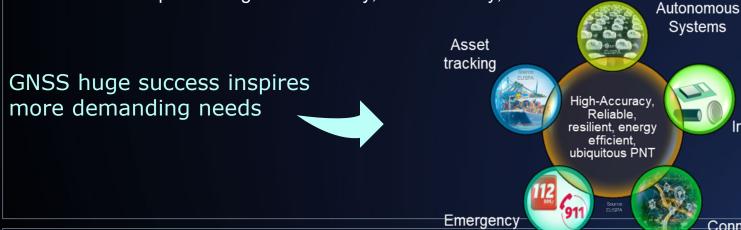
United Nations Office on Outer Space Affairs VIC, Vienna, Austria 9 June 2023

Lionel Ries, Marco Anghileri, Roberto Prieto-Cerdeira European Space Agency

👝 듲 📘 👥 🚍 🚛 🚛 🚛 🚛 🛄 🛄 🚍 🚝 🚛 🚺 🚺 🖛 🗮 🔤 🔤 🚺

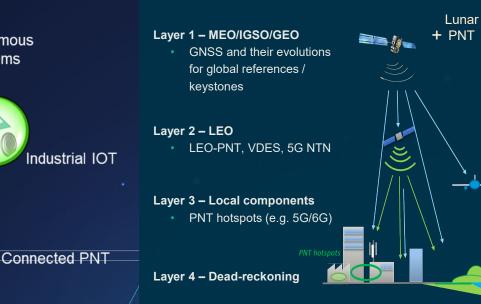
THE EUROPEAN SPACE AGENCY

LEO-PNT Context / Motivation


→ THE EUROPEAN SPACE AGENCY

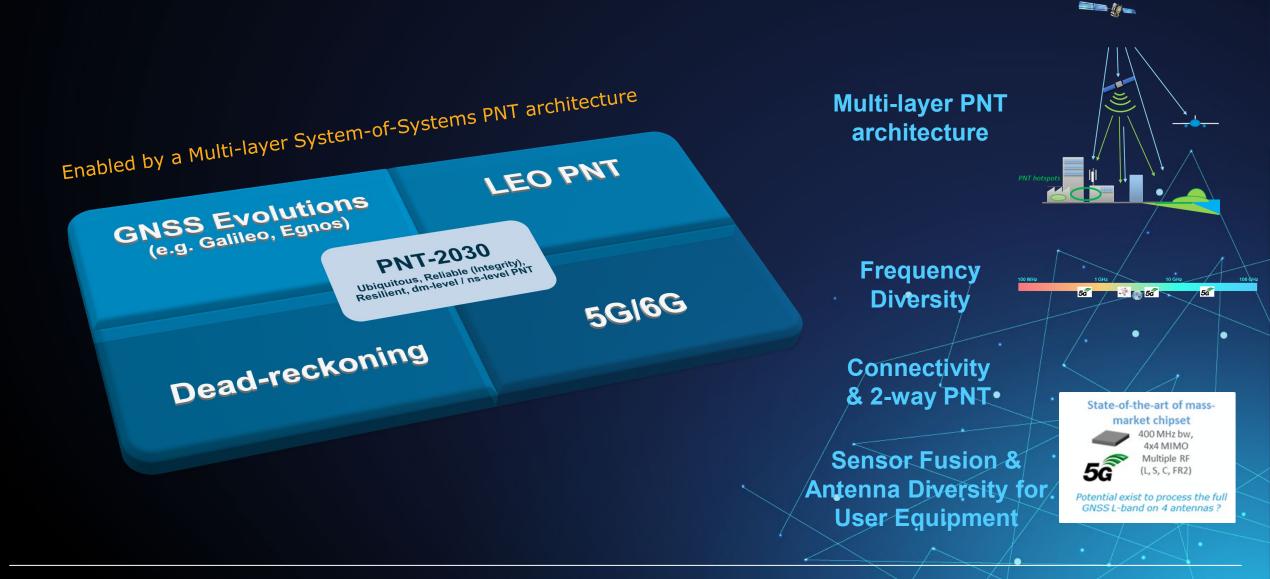
Evolution of SATNAV towards Multi-layer PNT

GNSS / PNT : 1st spin-off of space applications


- 6.5 billion receivers, 150 billion euros / year (Euroconsult/EUSPA), 10% annual market growth in next decade
- Essential component of global economy, smart mobility, etc.

New models for LEO infrastructures

- New industrial models large scale manufacturing and launches
- New business models complementarity vs backbone systems, scalability
- New opportunities distributed infrastructures, standardisation (e.g. 5G NTN)


→ Evolution of SATNAV towards Multi-Layer System-of-Systems

LEO-PNT fully complementary & boosting MEO GNSS backbone

call location

Vision PNT-2030: Ubiquitous, Reliable (Integrity), Resilient, dm-level and ns-level Accuracy Cesa

LEO-PNT: System Concepts and Differentiators

Purpose-built LEO-PNT

- PNT measurements derived from PNT signals dedicated SV or PNT hosted payload (e.g. on satcom)
- Signal / frequencies designed for PNT
- Geometry designed for PNT (dedicated) or for hosting systems

Fused PNT with Satcom

PNT measurements derived from satcom signals

- Signals / frequencies designed for satcom, with tailoring for PNT
- Constellation geometry and antenna coverage : constrained by hosting system

Signals of Opportunity (SOOP)

PNT measurements derived from 3rd party signals

- Signal / Frequencies designed for 3rd party missions
- Constellation geometry and antenna coverage: constrained by hosting system
- Ad-hoc monitoring necessary to support commitment of PNT service provider

LEO PNT differentiators - a combination of

LEO specificities, Frequency diversity, NAV / COM synergies

Lower free space losses

Facilitator for compact payloads, frequency diversity and 2way PNT links

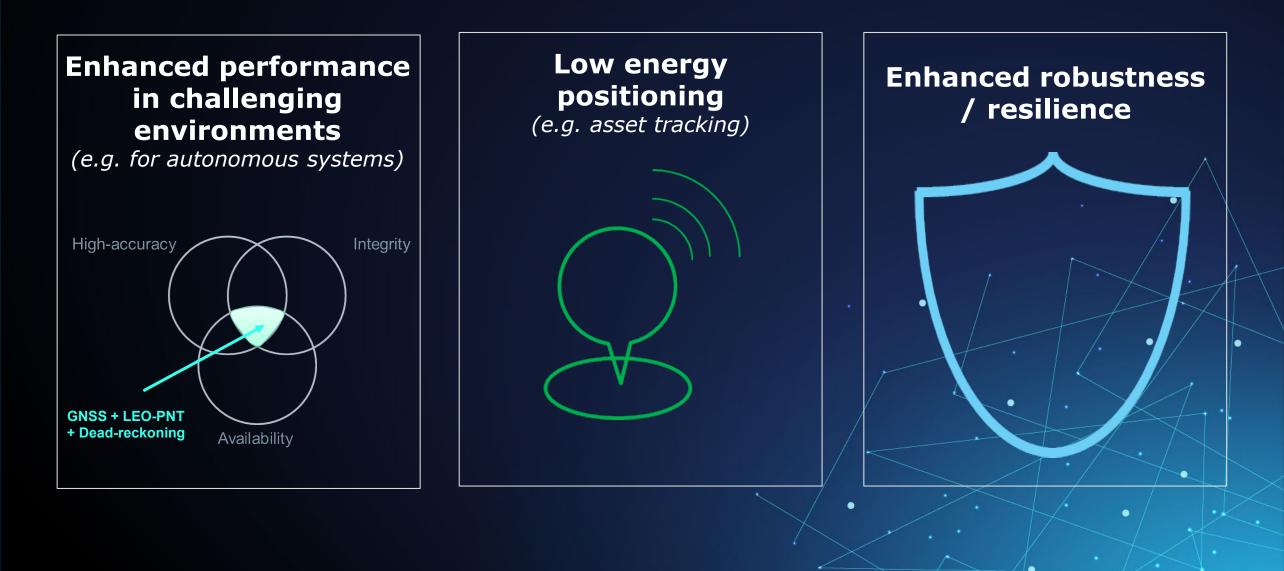
GNSS-enabled ODTS

Complemented by ISL

Measurement Diversity

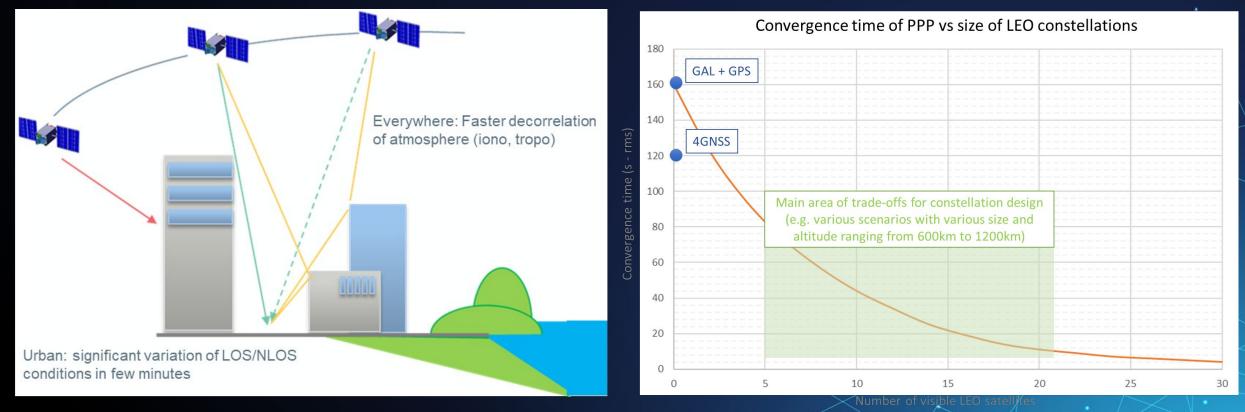
• Decorrelation, whitening of multipath, shorter outages, etc.

2-way PNT links


5G Satcom - NTN (Non-Terrestrial Networks)

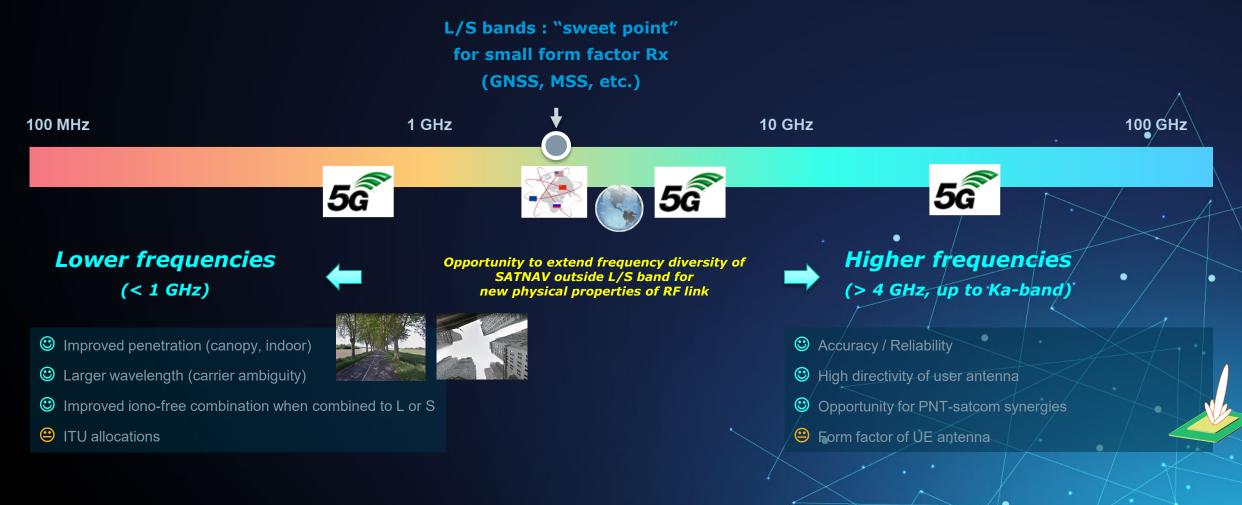
Frequency Diversity

LEO-PNT: Key Use Cases

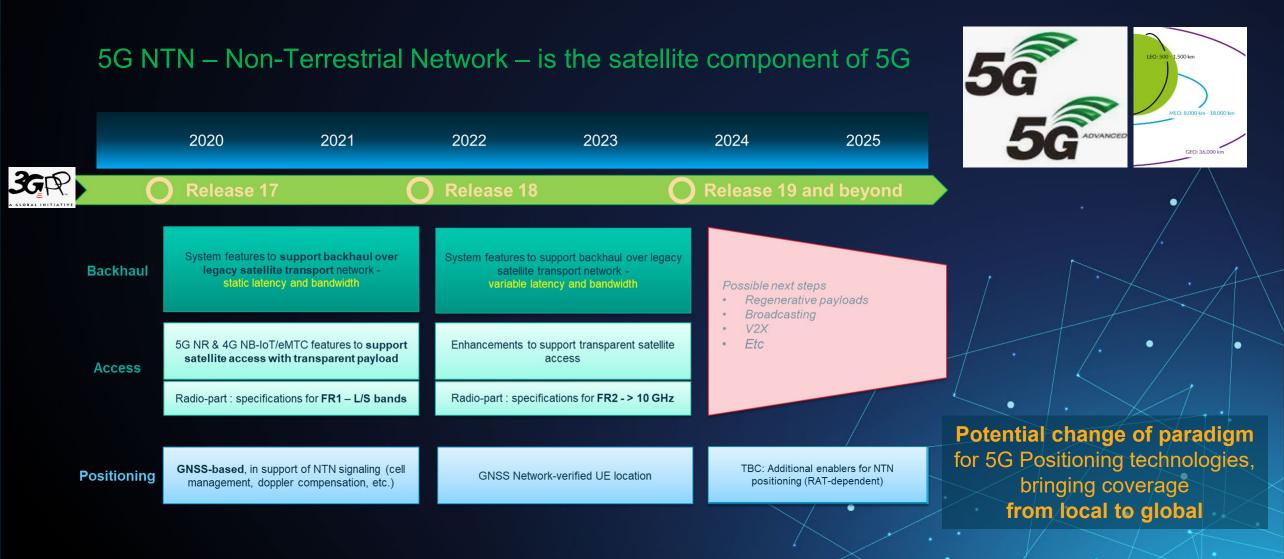

Measurement Diversity

Enhanced measurements diversity enabled by faster SV motion

- Measurement decorrelation: reduced convergence time for PPP algorithms (GNSS + LEO)
- Doppler-based positioning (1-3 satellites): improved availability, but lower accuracy (3m–100m)
- Shorter outages in case of NLOS: improved coasting with drifting sensors (e.g. IMU, MAC or equivalent)


Example: Faster convergence of PPP algorithms

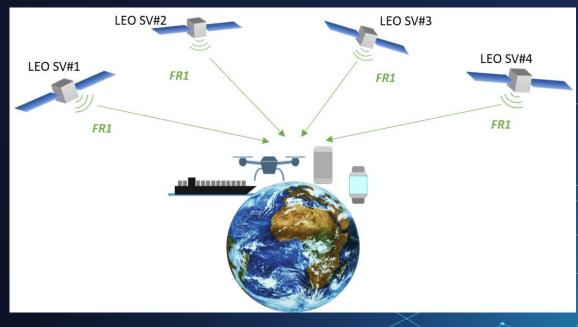
The Opportunities of Frequency Diversity



Low Size-Weight-Power payload and low Time-To-Market facilitates the introduction of additional frequencies for improved frequency diversity

The Opportunities of 5G NTN for LEO-PNT

Positioning with 5G NTN



Particularly interesting for mobile and new classes of users addressed by 3GPP

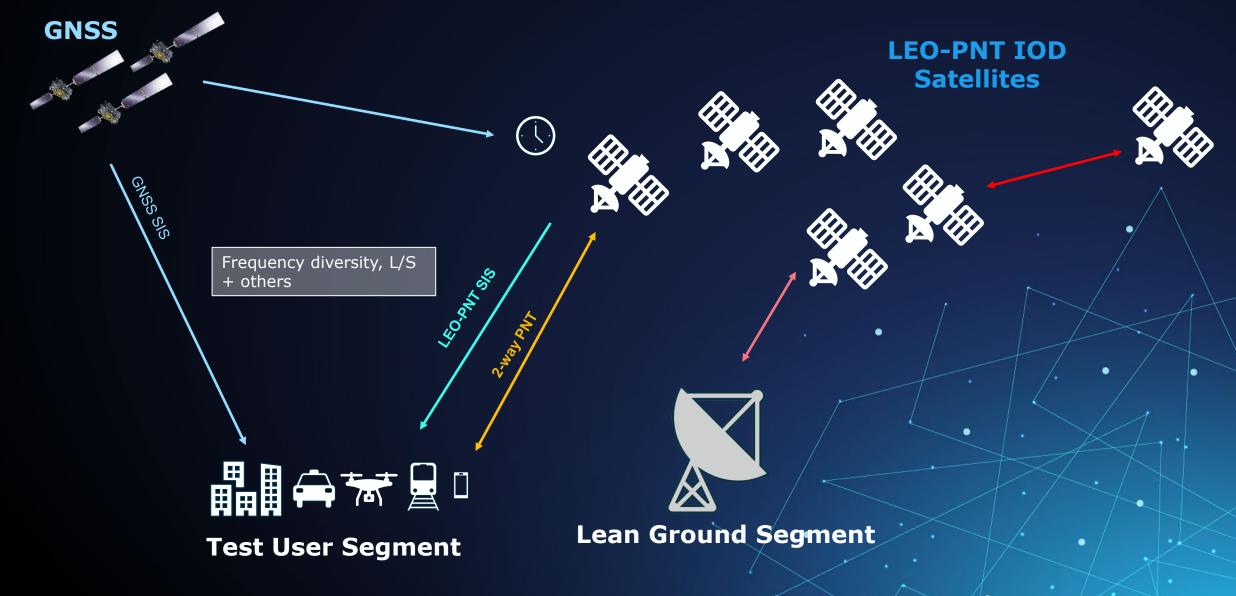
- Exploitation of Com / NAV synergies
- Devised from 3GPP SA1 "Study on Satellite Access Phase 3", where access of devices without GNSS is being considered
- Target various use cases and waveforms, including for low-complexity processing

Illustrative concept: Implementation of NTN ranging signals over satellites using 3GPP radio air interface (waveform and frequency), featuring PNT-friendly geometry (e.g.,

GNSS-like)


The FutureNAV LEO-PNT Programme

ESA's FutureNAV LEO-PNT Objectives

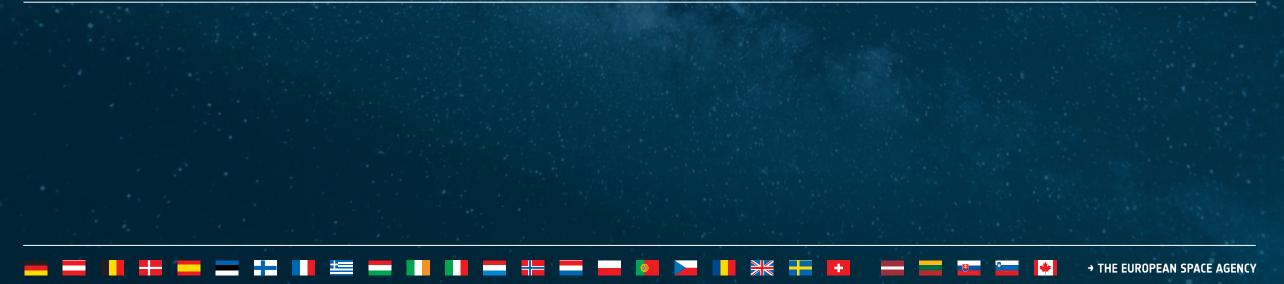

Accelerate LEO-PNT from concepts to demonstration through Fast-Track In-Orbit Demonstration, and prepare added-value services for potential future LEO-PNT systems.

👝 🚍 📕 🚝 🧱 🚍 📲 📕 🗮 🚍 📕 📲 👫 🚍 🙀 🚳 🔽 🚺 🗮 👬 🗰 🖓

ESA's FutureNAV LEO-PNT IoD – System Overview

Future LEO-PNT System Perspectives

Future LEO-PNT System Perspectives in Europe



👝 🚍 📕 🚝 🚍 🔚 📕 🚝 📕 📕 🔚 🚍 👫 🚍 🙀 🚺 🖉 🗛 🖓

Possible Areas of Coordination

Possible Areas of Coordination

The following aspects may be subject of coordination among current and future LEO-PNT systems:

- Spectrum aspects (frequency coordination, protection of spectrum, usage of new bands for radionavigation)
- Space debris mitigation
- Compatibility / interoperability among LEO-PNT systems and with GNSS/SBAS
- Use of standards

Summary

			 		 	 10 A	 	1.00			100 C	100 A 10 A 10	 1	 47 - N			 								
				# 2 C												A			1.1.1.1.1.1		1.				
		1.0															-								
											0				-			0		-	THE	EUROP	EAN SP	ACE AGE	NCY

Summary

- Opportunities are identified for PNT from LEO orbit to complement / augment existing GNSS systems in response to current, future, diverse and challenging user needs
 → LEO-PNT has the potential to be a major contributor to GNSS and PNT in general
- ESA's FutureNAV LEO-PNT In-Orbit Demonstration established to demonstrate services and enabling technologies in preparation of future operational systems
- In Europe, given GNSS industrial competences, Commercial and/or Institutional prospective, LEO-PNT systems could be envisaged in the future
- A number of areas have been identified for possible follow-up coordination including spectrum, space debris, compatibility and interoperability, and usage of standards

Thank you for your attention .

Any Questions?