

Galileo High Accuracy Service ICG PPP Interoperability Task Force 2nd Workshop

Ignacio Fernandez-Hernandez European Commission

Table of contents

- Why the Galileo HAS
- What is the Galileo HAS
- Galileo HAS users and applications
- Galileo HAS: What comes next

Why the Galileo HAS

L 6	2/34	EN

COMMISSION IMPLEMENTING DECISION (EU) 2018/321

of 2 March 2018

amending Implementing Decision (EU) 2017/224 setting out the technical and operational specifications allowing the commercial service offered by the system established under the Galileo programme to fulfil the function referred to in Article 2(4)(c) of Regulation (EU) No 1285/2013 of the European Parliament and of the Council

- March 2018: EU Decision to provide Galileo HAS for free, with a target 20-cm accuracy. But why?
- Follows a natural GNSS trend
- Part of an ecosystem, yet first of its kind: global, free, 24/7. And standalone
- Meets user demands
- Leaves room for classic commercial applications and user level innovation: cm/mm-level applications, PPP integrity...
- Provided with existing Galileo infrastructure

What is the Galileo HAS

- Galileo HAS provides precise corrections for satellite orbit, clock and signal biases
- Galileo HAS corrections distributed via
 - Galileo satellites, E6-B signal (1278.75 MHz)
 - Internet
- Typical accuracy in the decimetre level (after convergence), with Precise Point Positioning (PPP) receivers
- (Almost*) global coverage and free

*global coverage of corrections but no global performance commitment yet

What is the Galileo HAS

- Galileo HAS provides precise corrections for satellite orbit, clock and signal biases
- Galileo HAS corrections distributed via
 - Galileo satellites, E6-B signal (1278.75 MHz)
 - Internet
- Typical accuracy in the decimetre level (after convergence), with Precise Point Positioning (PPP) receivers
- (Almost*) global coverage and free

Galileo/GPS single epoch standard positioning vs. HAS positioning Horizonal position error, JRC, Ispra (IT), 7/Sept/2023 (Gal E1-E5b/GPS L1CA-L2C single epoch solution vs.HAS float solution)

Standard horizontal accuracy 95%: 1.925 m

HAS horizontal accuracy 95%: 0.094 m

What is the HAS – Ground Infrastructure

 GNSS Service Center / HA data generator
Service development and validation
Operations and Maintenance Security Accreditation
Service Provision – user's interface

14+1 Galileo sensor stations
Ground Control Centers
Up-Link Stations

Space segment

Support to experimentation and Validation

What is HAS – Initial Service Area

GALILEO HIGH ACCURACY SERVICE SERVICE DEFINITION DOCUMENT (HAS SDD)

Issue 1.0 January 2023

European Union Agency for the Space Programme (EUSPA), HAS SDD [Online]: <u>https://www.gsc-</u> europa.eu/sites/default/files/sites/all/files/Galileo_H AS_SDD.pdf

What is HAS - Initial Performance

	Product/DOY		244	245	246	247	248	Avg
Galileo Corrections Accuracy	Orbite (cm)	RMS-1D	6.5	6.1	5.8	5.1	5.6	5.8
	Orbits (cm)	RMS-3D P95	18.5	13.2	14.6	12.9	15.6	15.0
	Clocks (cm)	SIGMA	3.7	4.2	3.5	3.6	3.9	3.8
		RMS P95	9.6	8.3	9.3	8.6	8.0	8.7
	Code Bias (cm)*	RMS P95: C1C	12.0	10.9	21.7	9.6	10.4	12.9
		RMS P95: C5Q	11.5	10.7	21.1	8.9	9.4	12.3
		RMS P95: C7Q	11.5	10.7	21.0	9.0	9.3	12.3
		RMS P95: C6C	11.1	10.2	20.9	8.7	9.2	12.0
GPS corrections accuracy	Orbits (cm)	RMS-1D	5.1	5	5	4.9	5.2	5.0
		RMS-3D P95	10.7	13.5	11.4	10.7	10.8	11.4
	Clocks (cm)	SIGMA	6.4	6.3	6.6	7.3	7.6	6.8
		RMS P95	17.6	18.0	19.0	24.7	19.2	19.7
	Carla Diag (am)*	RMS P95: C1C	13.7	15.8	13.0	18.3	14.2	15.0
	Code Blas (cm)*	RMS P95: C2P	13.7	15.8	12.9	18.2	13.9	14.9
GAL & GPS Corr. Availability	Orbits (%) Mean		96.0	97.0	98.2	98.8	99	97.8
	Clock (%) Mean		93.5	94.3	93.2	94.3	91.0	93.3
	Code bias (%) Mean		100	100	100	100	100	100

TABLE 1 HAS corrections performance (period: September 1, 2022 (DOY=244)to September 5, 2022 (DOY=248)).

*Code bias accuracy after HAS declaration should be below 10 cm, 95%.

		Errors RMS (cm)	Errors P95 (cm)		
Europe & Africa	North	East	Height	Horizontal	Vertical
SPTR	4.5	6.6	13.8	19.5	26.5
ROBU	5.7	6.6	14.0	17.3	26.8
SWOJ	6.5	6.1	14.6	13.5	28.3
NAWI	4.0	5.3	14.4	18.1	25.3
America	North	East	Height	Horizontal	Vertical
USNA	6.0	8.3	17.5	19.8	32.9
CABU	6.1	9.0	21.9	21.4	38.1
CHSA	8.8	13.7	24.0	26.5	36.1
FRTA	9.1	9.7	24.2	27.0	40.7
Asia	North	East	Height	Horizontal	Vertical
ΙΝΚΟ	5.8	8.7	21.8	19.1	35.7
TATA	8.6	15.9	27.0	33.1	52.2

TABLE 2 Summary of HAS positioning performance results. Period: 8/31/22 to 9/5/2022.

Galileo HAS Users and Applications

- Galileo HAS addresses both traditional and emerging markets and a myriad of applications
- It will feed innovative applications in transport, agriculture, geodesy, entertainment and many other sectors

Galileo HAS Users and Applications

What does a user need to benefit from HAS?

Users will need an GNSS (Gal/GPS) E6 capable or connected RX with a PPP algorithm

Galileo HAS Users and Applications

• EU is supporting the early development of HAS prototype RXs since years:

Fundamental Elements

GALILEO HAS UA & UT

- H2020 projects: GISCAD-OV, PrepareShips, ESRIUM... 5 projects
- **HAUT**: HAS reference algorithm and user terminal used for the HAS Service Validation.
- **Key stakeholders** were involved in the **HAS testing** in 2021/22 to anticipate the development of their HAS prototypes
- GNSS E1/E5/E6 Signal or Internet connected receivers are already available
- HAS RXs will become commercially available progressively after the HAS Service Declaration **based on PPP commercial solutions** in the market since years

Galileo HAS What comes next?

Short-term: use it!

- User segment development
 - More HAS-enabled receivers
 - HAS R&D actions
 - HAS Reference Algorithm publication
- HAS based applications development

Mid / long-term: HAS Full Service

- Increased global performance (e.g. better accuracy)
- Faster positioning in EU (atmospheric corrections)
- HAS authentication and error characterization

Galileo High Accuracy Service ICG PPP Interoperability Task Force 2nd Workshop

Ignacio Fernandez-Hernandez European Commission

(based on EUSPA/EC Galileo HAS Initial Service Declaration presentation)