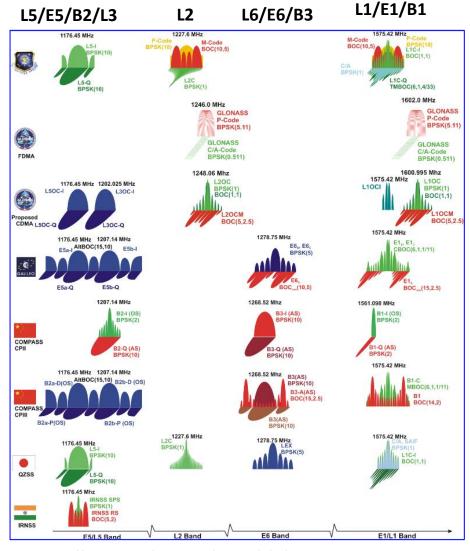


Introduction to GNSS and GNSS Data Processing

Dinesh Manandhar, Associate Professor (Project)

Center for Spatial Information Science (CSIS), The University of Tokyo

dinesh@csis.u-tokyo.ac.jp

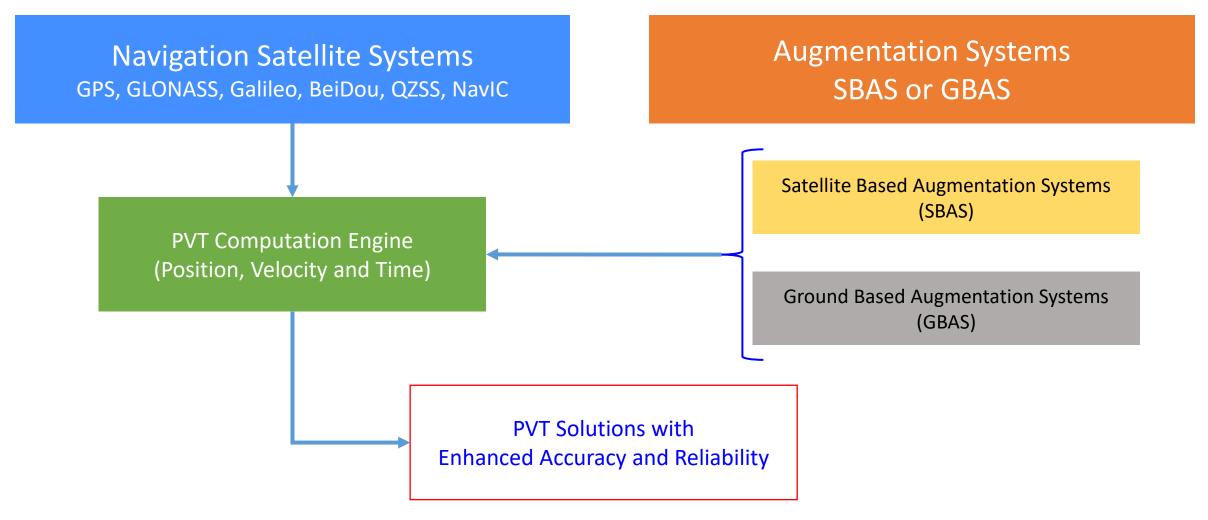


What is GNSS?

 GNSS or Global Navigation Satellite System is an acronym used to represent all navigation satellite systems such as

Satellite	Country	Coverage
GPS	USA	Global
GLONASS	Russia	Global
Galileo	Europe	Global
BeiDou (BDS)	China	Global
QZSS (Michibiki)	Japan	Regional
NavIC	India	Regional

- ✓ GPS and GLONASS have signals for civilian and military usage
 - Military signals are encrypted and not available for civilian use
- ✓ Galileo and BeiDou also have Open and Restricted Signals
- ✓ All civilian signals are freely available
- ✓ Technical information for civilian signals are made public
 - Its called ICD (Interface Control Document) or IS (Interface Specification)
 - Provides necessary information to develop a GNSS receiver



https://gssc.esa.int/navipedia/images/c/cf/GNSS_All_Signals.png

Systems Related with Navigation

ICAO defines regulations related to the use of GNSS and SBAS for aviation

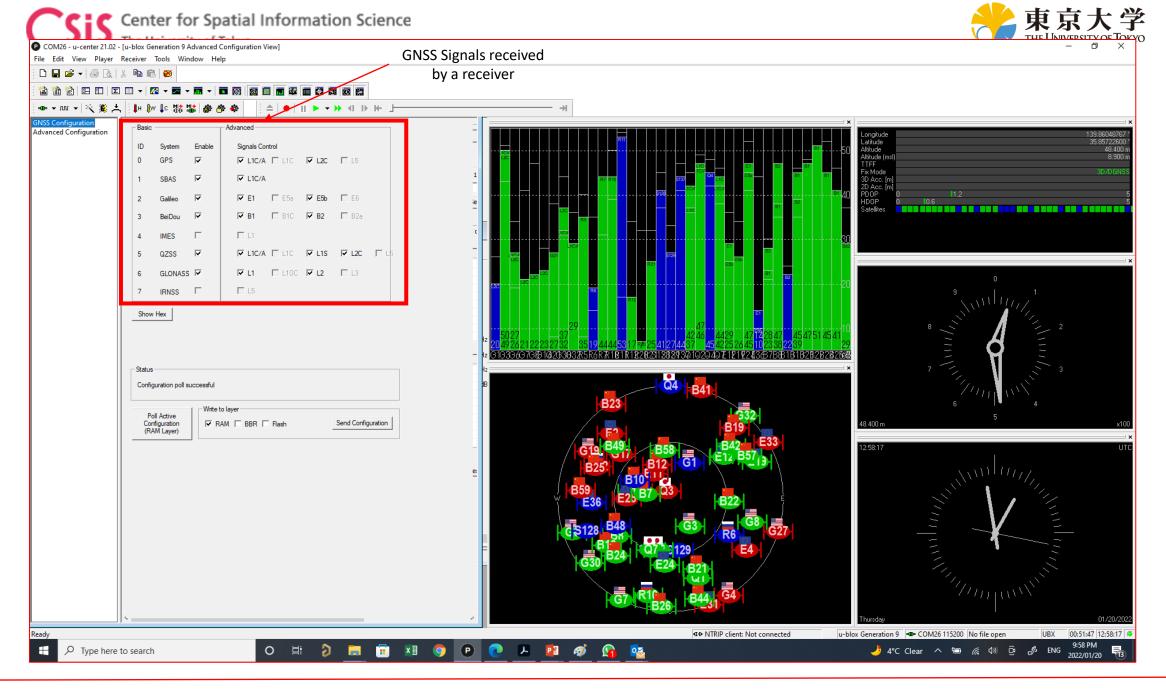
Satellite Based Augmentation System (SBAS)

- Satellite Based Augmentation System (SBAS) are used to augment GNSS Data
 - Provide Higher Accuracy and Integrity
 - Correction data for satellite orbit errors, satellite clock errors, atmospheric correction data and satellite health status are broadcasted from satellites
- SBAS Service Providers
 - WAAS, USA (131,133,135,138)
 - MSAS, Japan (129,137)
 - EGNOS, Europe (120,121,123,124,126,136)
 - BDSBAS, China (130,143,144)
 - GAGAN, India (127,128,132)
 - SDCM, Russia (125,140,141)
 - KASS, Korea (134), Also Navigation System (KPS)
 - AUS-NZ, Australia (122)
 - NSAS, Nigeria, (147)
 - ASAL, Algeria (148)

Center for Spatial Information Science The University of Tokyo COM26 - u-center 21.02 - [Messages - UBX - CFG (Config) - GNSS (GNSS Config)] **GNSS Signals received** P File Edit View Player Receiver Tools Window Help _ & x by a receiver UBX - CFG (Config) - GNSS (GNSS Config) ACK (Acknowledge) Longitude Latitude Altitude Altitude (m TTFF \$atellite signal power level **Position Output** 35.85718550 49.400 m AID (GPS Aiding) CFG (Config) 9.900 m GNSS Signals - ANT (Antenna Setting GPS ✓ L1C/A BATCH (Batch mode of ✓ L1C/A ... CFG (Configuration) -- DAT (Datum) Galileo - DGNSS (Differential GI BeiDou Satellites Satellites -- DOSC (Disciplined Osc EKF (EKF Settings) QZSS ▼ L1C/A ▼ L1S - ESFA (Accelerometer (Altitude 12 **▼** L10F - ESFALG (IMU-mount / GLONASS - ESFG (Gyroscope Conf IRNSS - ESFGWT (Gyro+Wheel - ESFWT (Wheel-Tick Co Number of channels available - ESRC (External Source) FXN (Fix Now Mode) Auto set Number of channels to use GEOFENCE (Geofence GNSS (GNSS Config) For specific SBAS configuration use - HNR (High Nav Rate) ... INF (Inf Messages) - ITFM (Jamming/Interf - LOGFILTER (Log Settin - MSG (Messages) GNSS Satellites visible in - NAV5 (Navigation 5) - NAVX5 (Navigation Ex the sky where receiver is ... NMEA (NMEA Protoco - ODO (Odometer/Lowlocated - PM (Power Managem - PM2 (Extended Power Time in UTC - PMS (Power Managen .. PRT (Ports) ... PWR (Power) .. RATE (Rates) - RINV (Remote Invento - RST (Reset) RXM (Receiver Manag - SBAS (SBAS Settings) - SENIF (Sensor Interfac -- SLAS (SLAS settings) - SMGR (Sync Manager ... SPT (Sensor Productio ... TMODE (Time Mode) - TMODE2 (Time Mode - TMODE3 (Time Mode TP (Timepulse) 🗙 🖺 Send 🧗 Poll 🔯 📠 🐺 頂 🖼

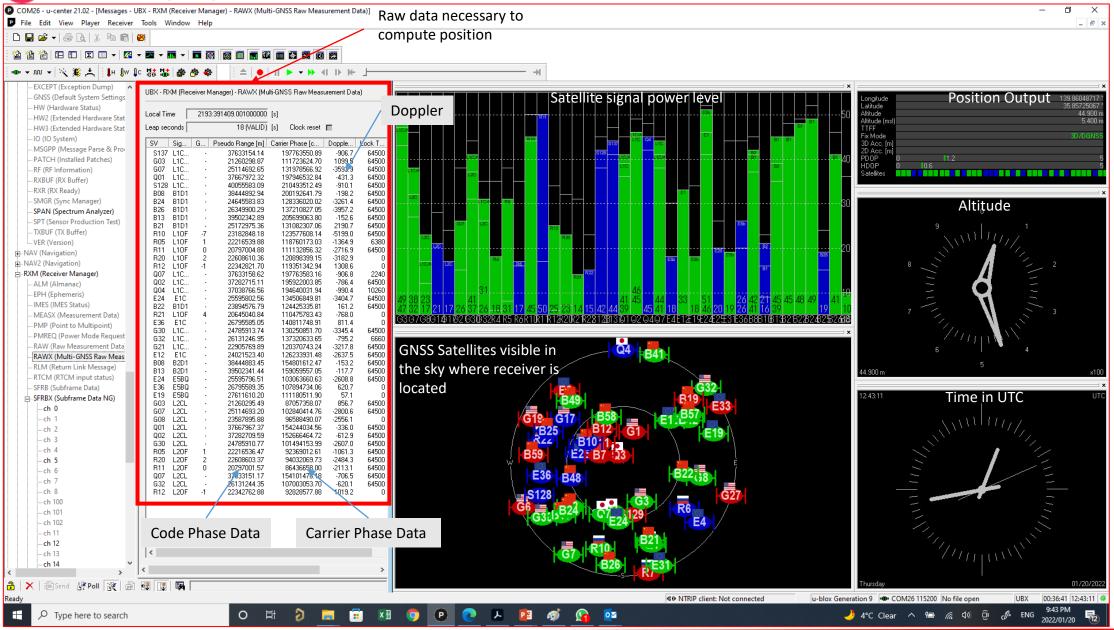
🟢 🗷 🧿 🕑 💽 🚨 📴 🐠

Type here to search


αο NTRIP client: Not connected

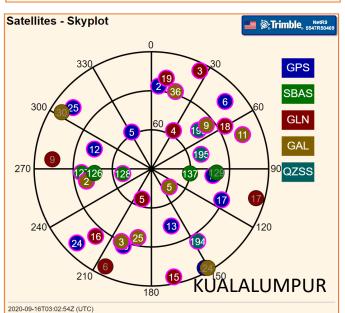
u-blox Generation 9 - COM26 115200 No file open

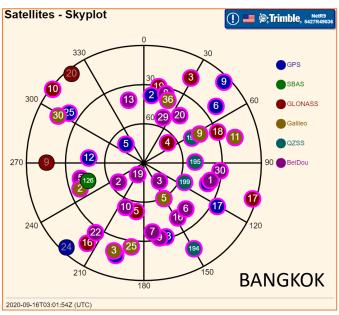
(4) 5°C Sunny ∧ 1 (2) (3) (4) ENG

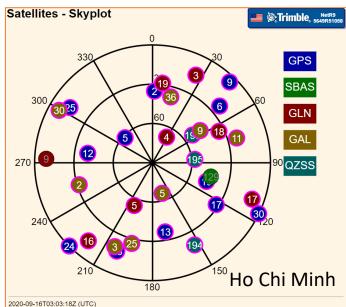

UBX 00:12:02 12:18:32 6

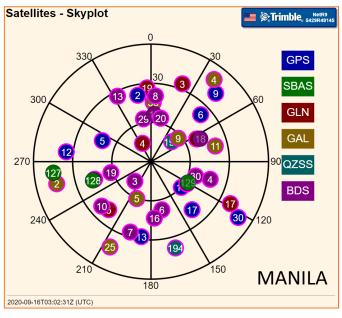
2022/01/20

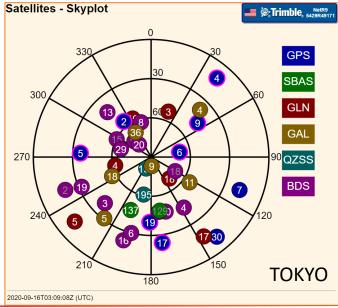


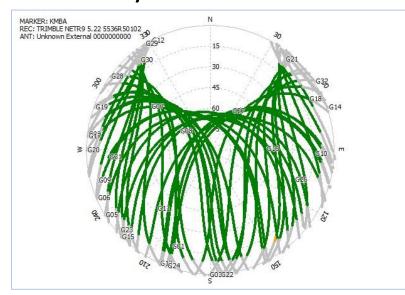

CSiS Center for Spatial Information Science The University of Tokyo

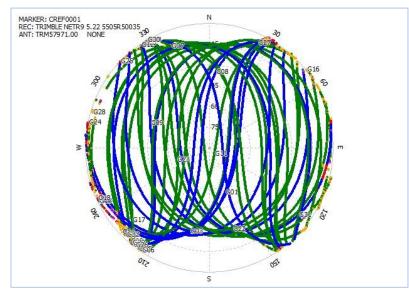


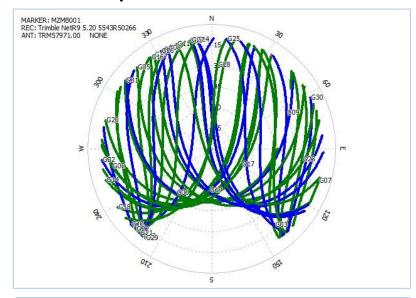


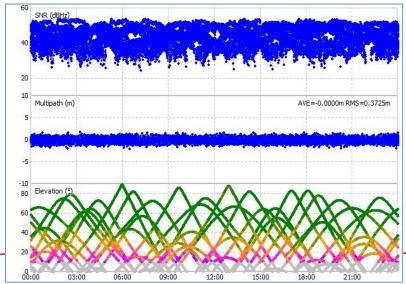


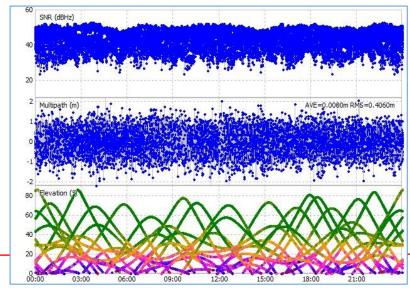


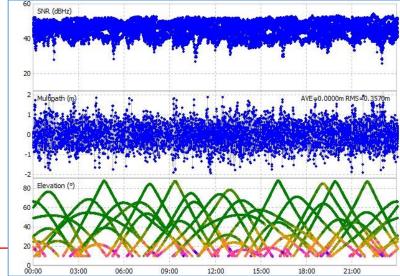


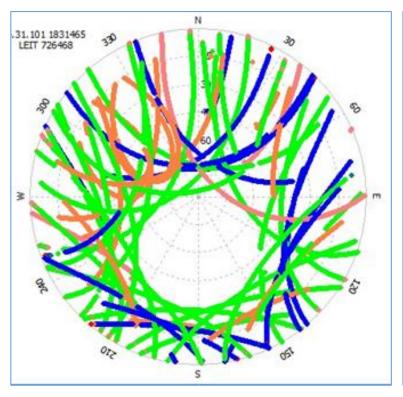

GPS Skyplots: Tokyo, Jakarta and Maputo

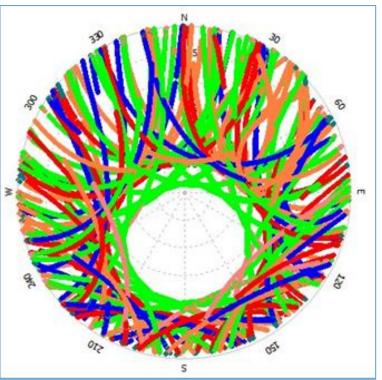

Tokyo Base-Station



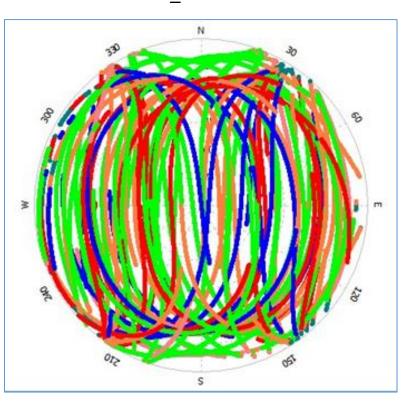








GNSS Signal Visibility: Skyplot


Antartica_DUMG00ATA

Antartica_MAW100ATA

Gabon_NKLG00GAB

QZSS (Japanese version of GPS)

QZSS 1st Satellite was Launched on 11th SEP 2010 and Declared Operational on 1st NOV 2018

Declaration Ceremony of QZSS Operation

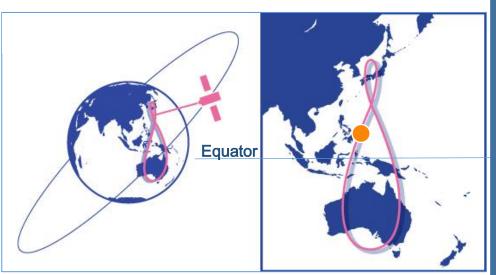
http://qzss.go.jp/events/ceremony_181105.html

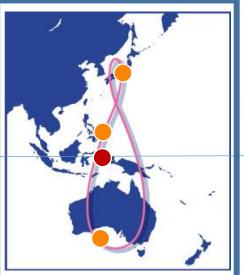
QZSS Signals and PRN ID: Current Status

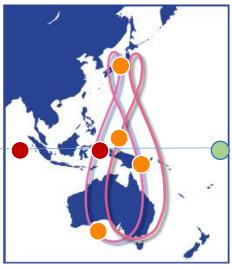
PRN	SVN	Satellite	Launch Date (UTC)	Orbit	Positioning Signals
193		QZS-1	2010/9/11	QZO	L1C/A, L1C, L2C, L5
183	J001				L1S
193					L6
194	J002			QZO	L1C/A, L1C, L2C, L5
184		076.3	2017/6/1		L1S
196		QZS-2			L5S
194					L6
199	J003	O3 QZS-3 2017/8/19		GEO	L1C/A, L1C, L2C, L5
189			2017/8/19		L1S
197					L5S
137					L1Sb
199					L6
-					Sr/Sf
195	J004	QZS-4	2017/10/9	QZO	L1C/A, L1C, L2C, L5
185					L1S
200					L5S
195					L6

PRN	SVN	Satellite	Launch Date (UTC)	Orbit	Positioning Signals
196					L1C/A, L1C, L2C, L5
186	J005	076.40	2024 /40/26	070	L1S
186		QZS-1R	2021/10/26	QZO	L5S
196					L6

Source: https://qzss.go.jp/technical/satellites/index.html


QZSS Special Application Signals


Signal Name	Purpose	Signal Band	Accuracy	Convergence Time	Availability	Remarks
CLAS	High Accuracy	L6D	2 – 5 cm	Few minutes	Japan only	
MADOCA	High Accuracy	L6E	10 – 20 cm	10 – 20 minutes	QZSS Visible Area	Convergence time can be reduced by using local correction data
DC Report	Disaster Crisis (DC) Report during disasters	L1S	Not Applicable	Not Applicable (Available every 3 sec)	QZSS Visible Area	Also called Early Warning Message. Basically for Japan. Additional Message Types are defined for other countries as well.
Q-Anpi	2-Way communication during disasters	S	Not Applicable	Not Applicable	QZSS Visible Area	
SAS	Signal Authentication	L1, L5, L6	Not Applicable	Not Applicable (TTFA, TBA See QZSS IS Document)	QZSS Visible Area	Authenticates QZSS, GPS and Galileo signals LNAV, CNAV. CNAV-2, I/NAV and F/NAV Messages



QZSS Constellation Plan

	1 sat constellation
Number of Satellites	QZO •: 1
Purpose	Research & Development
Government Authority	JAXA
Operation	2010 ~ (10 years)
Service Time / day (Japan)	8 hours / day

4 sat. constellation

QZO •: 3, GEO •: 1

Operational
Complements GPS for positioning

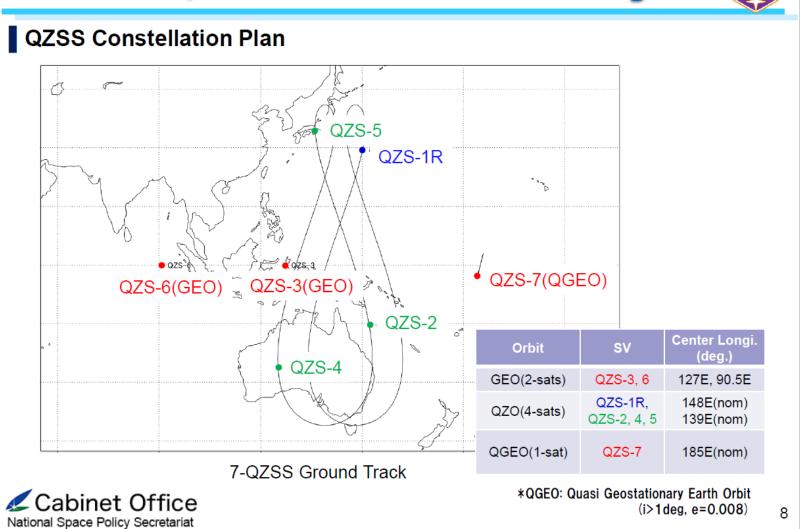
Cabinet Office

2018 ~ (15 years)

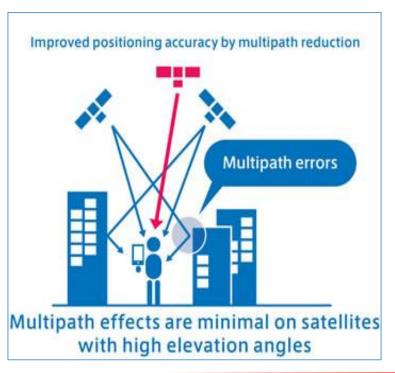
24 hours / day

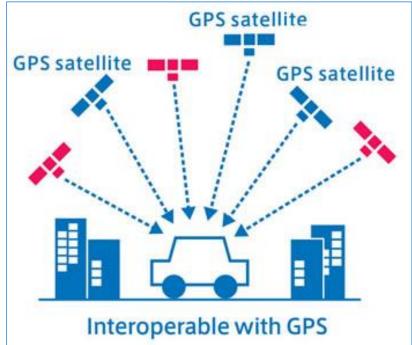
7 sat. constellation
QZO•:4, GEO•:2, QGO•:1
Operational,
Autonomous Positioning
Capability with QZSS only
Cabinet Office
2023 ~ (15 years)
24 hours / day

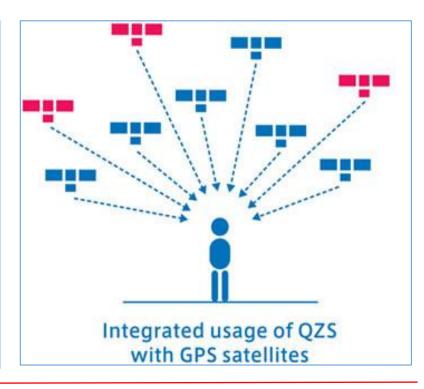
QZO: Quasi-zenith Orbit / GEO: Geosynchronous Orbit / QGO: Quasi-geostationary Orbit


Source: MGA 2019, Mitsubishi

2. QZSS 7SV Constellation Design

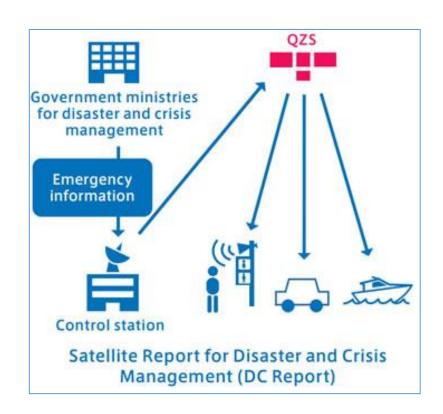

This slide is taken from presentation slides of S. Kogure, Introduction to Michibiki and EWS, presented on 13th July 2021

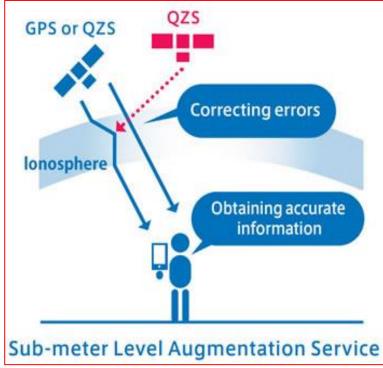


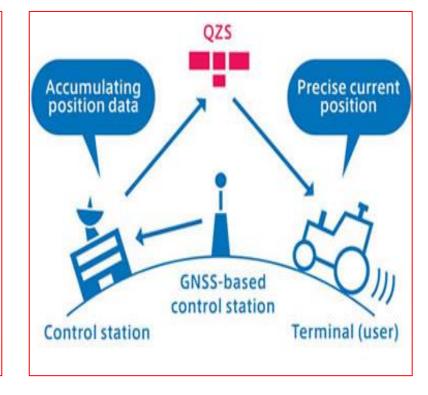


Characteristics of QZSS

- QZSS signal is designed in such a way that it is <u>interoperable with GPS</u>
- QZSS is visible near zenith; improves visibility & DOP in dense urban area
- Provides Orbit Data of other GNSS signals
- Provides <u>Augmentation Data for Sub-meter and Centimeter level position accuracy</u>
- Provides Messaging System during Disasters







Merits of QZSS

- Disaster and Crisis Management
- Short Message broadcast during Disaster
- Sub-Meter Level Augmentation Service (SLAS)
- High-Accuracy Positioning Services
- CLAS and MADOCA

QZSS Launch Schedule

Delay in launch schedule of 2023

https://qzss.go.jp/overview/intro/index.html

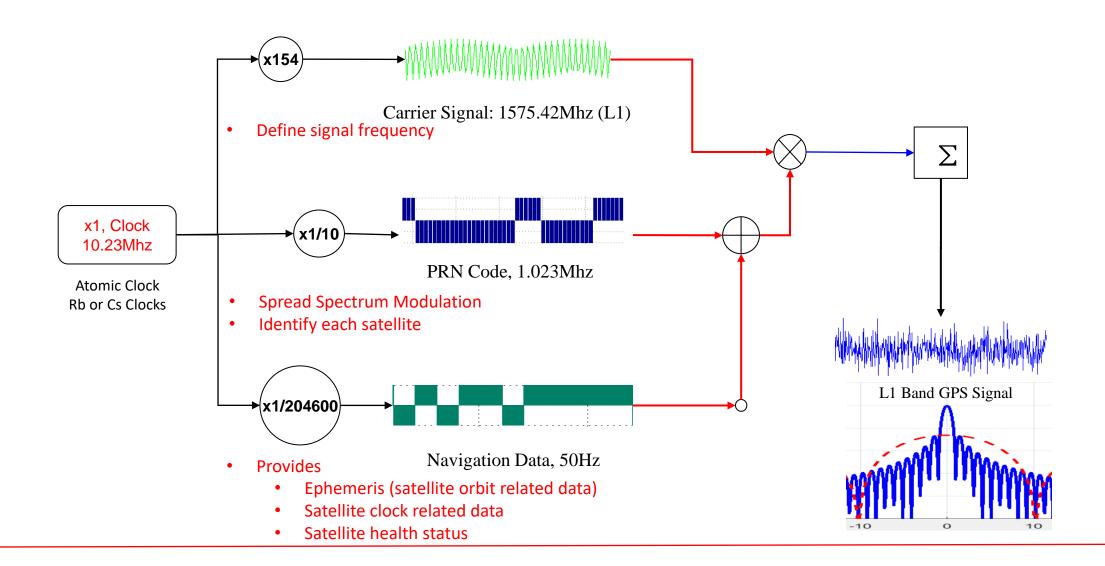
How does a GPS/GNSS Receiver Work?

GPS L1C/A Signal Structure

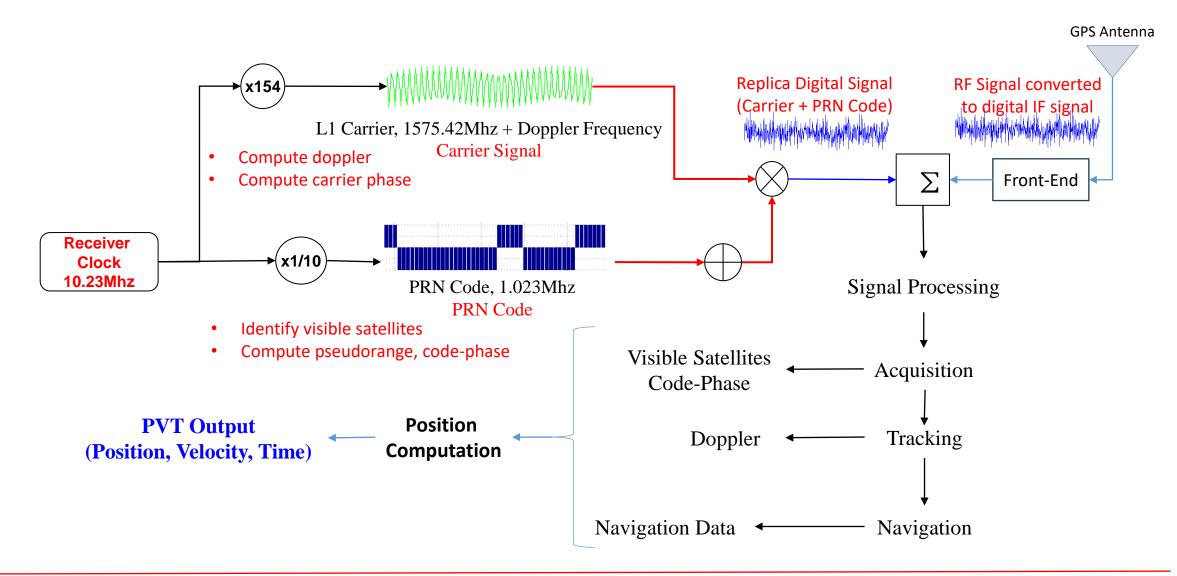
- Carrier Signal
 - It defines the frequency of the signal
 - For example:
 - GPS L1 is 1575.42MHz, L2 is 1227.60MHz and L5 is 1176.45MHz

• PRN Code

- Necessary to modulate carrier signal
- Used to identify satellite ID in the signal
- Should have good auto-correlation and cross-correlation properties


Navigation Data

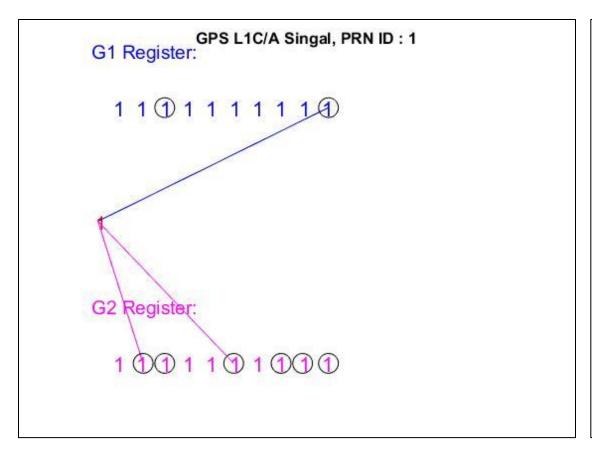
- Includes satellite orbit related data (ephemeris and almanac data)
- Includes satellite clock related information (clock errors etc.)
- Includes satellite health information

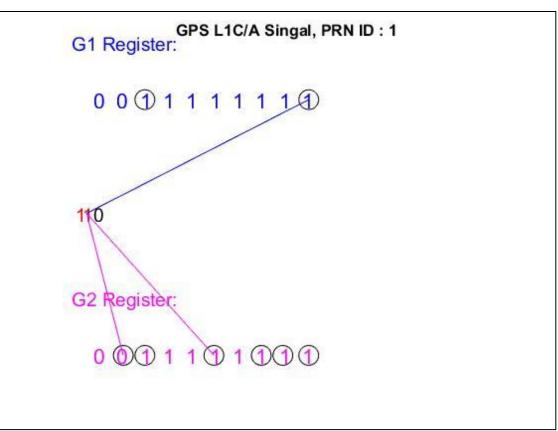

GPS L1C/A Signal Structure (Satellite Side)

GPS L1C/A Receiver Signal Processing

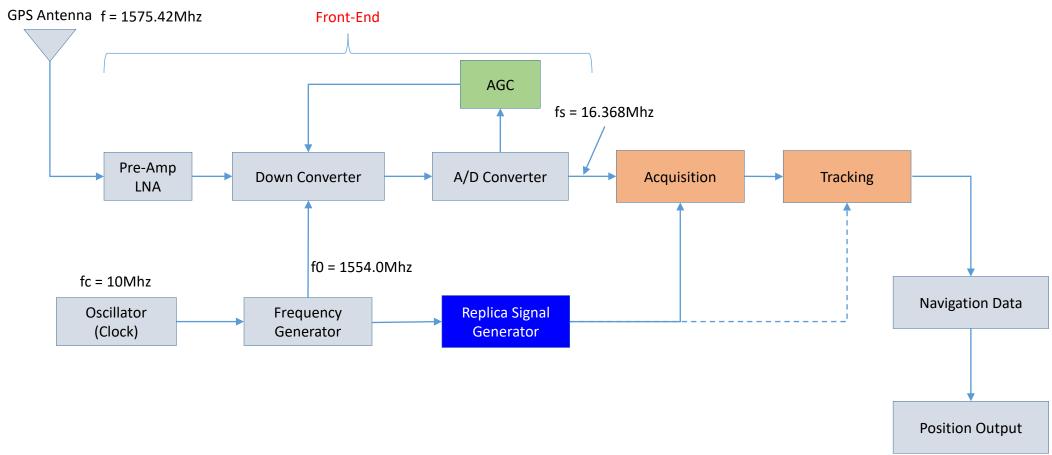
Generation of GPS L1C/A PRN Code

- Based on Gold Codes
- Use two 10 bit registers, G1 and G2
 LFSR (Linear Feed Shift Register)
- All initial bits of registers are set at 1
- Taps 3 and 10 are used for G1
- Taps 2,3,6,8,9,10 are used for G2
- Two additional taps are selected based on PRN ID. See GPS IS document for the list of the taps.
- Example, Taps 2 and 7 are used for PRN ID 1.

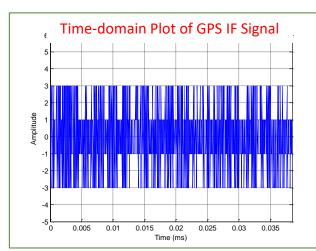

G1 Polynomial: [3,10] 1 1 10 **Output** Tap 2 & 6 for PRN ID 1 10 1 1 1 G2 Polynomial: [2,3,6,8,9,10]

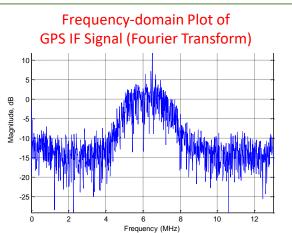

Refer video recording of webinar for details on PRN Code: https://www.youtube.com/watch?v=elWbDBHTJ6l&t=2s

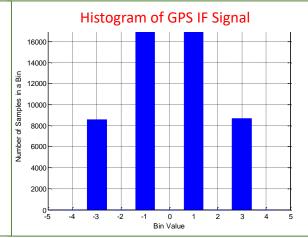
PRN Code Output #1

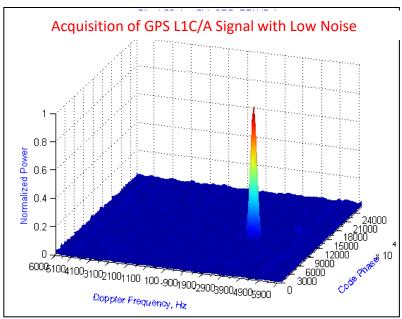


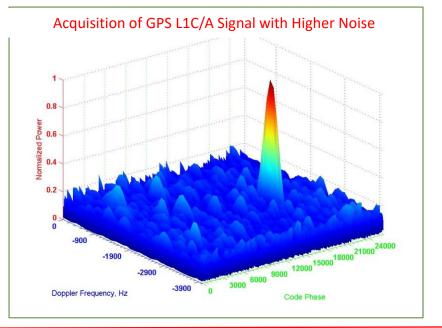
Block Diagram of GPS Receiver

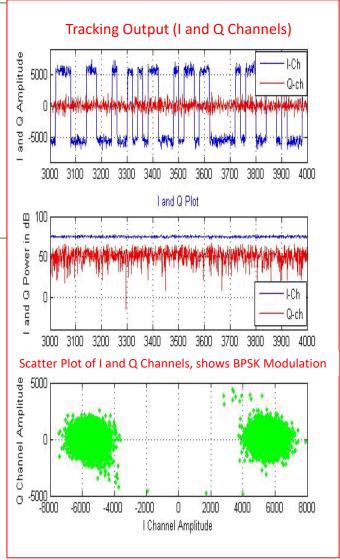

fc, f0, fs are only example values.

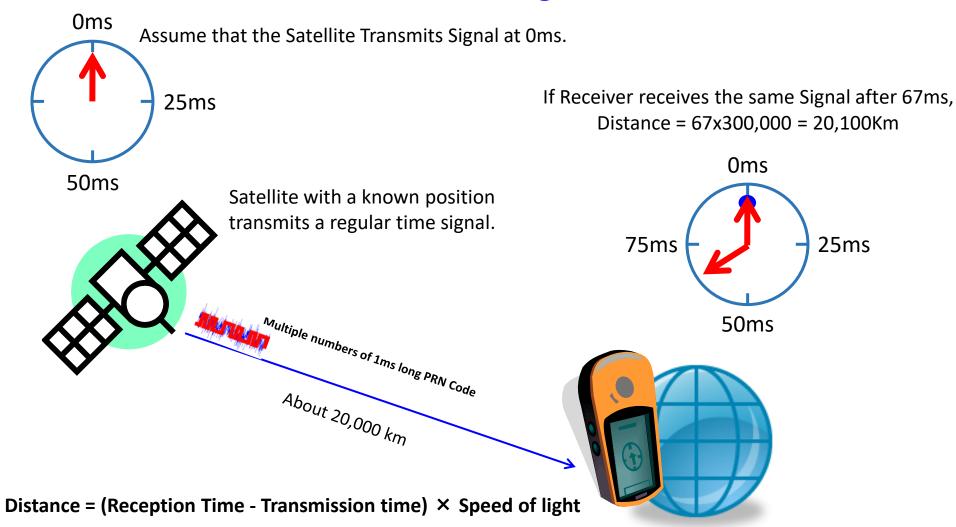

These values differ depending upon the design of the front-end



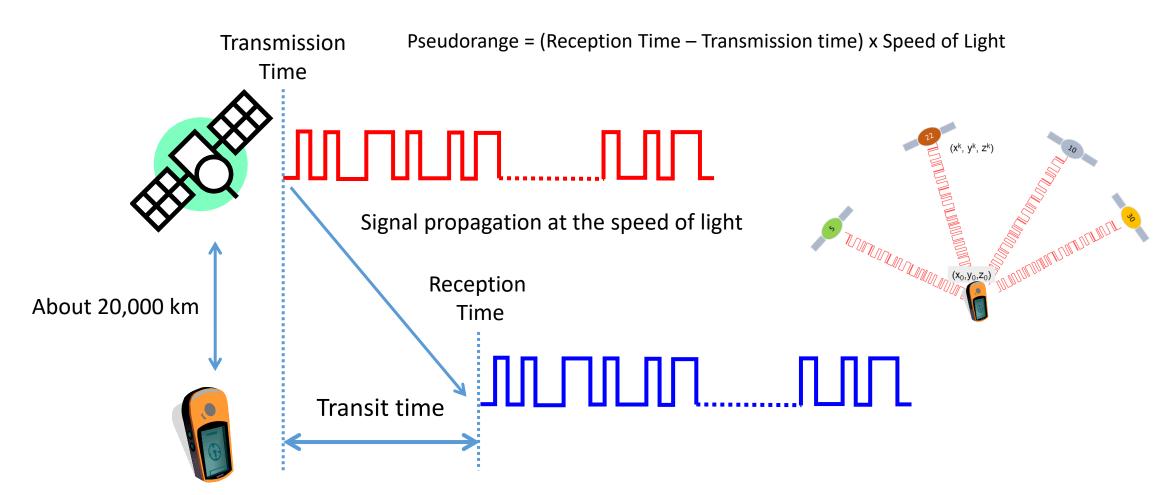



How does GPS Signal Look Like?



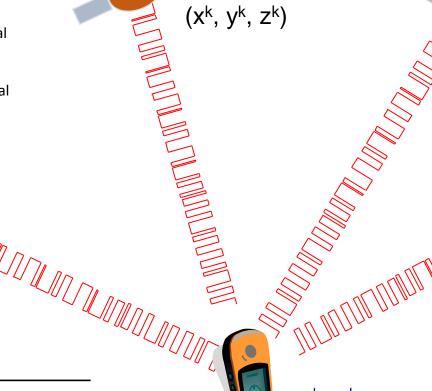


GNSS: How does it work? Determine the Distance using Radio Wave



Speed of Light: 300,000 km/s

Pseudorange (Code-Phase Measurement) - 1


A GPS receiver measures the signal transmission time from the code phase at signal reception time.

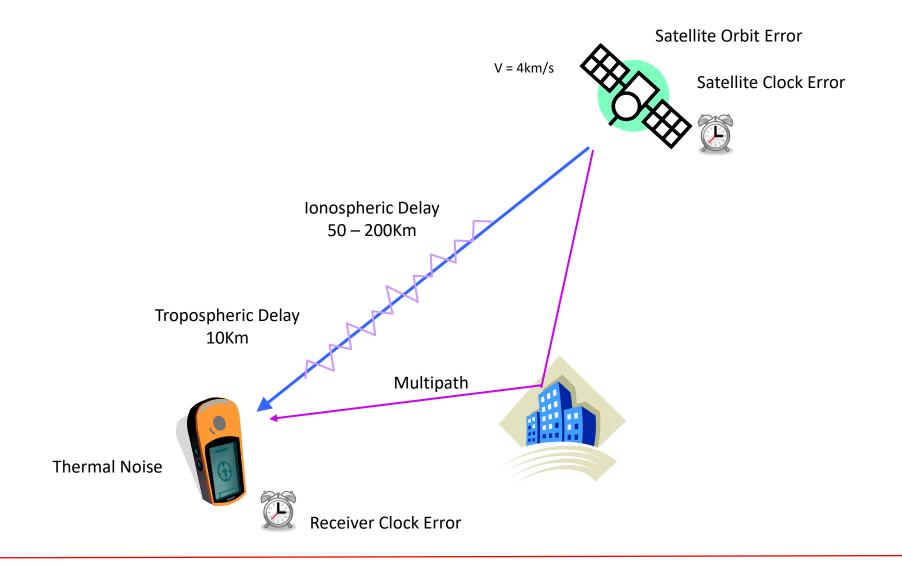
GNSS: How does it work? Principle of Satellite-based Navigation

Receiver generates its own GPS signal similar to the signal coming from the satellite for each satellite

- → Its called Replica Signal
- → The Replica Signal includes PRN Code and Carrier Signal
- → This Replica Signal is moved forward and backward to match with the incoming signal

 (x_0, y_0, z_0)

$$\rho^{k} = \sqrt{(x_{0}^{k} - x_{s}^{k})^{2} + (y_{0}^{k} - y_{s}^{k})^{2} + (z_{0}^{k} - z_{s}^{k})^{2}} + \varepsilon$$


If $k \ge 4$, solve for x, y, z and errors including clock bias ε

Correlation between Incoming Signal and Receiver Generated Signal

Error sources

Pseudorange equation

Ideal Case:
$$\rho_0 = c(t_r - t_s)$$

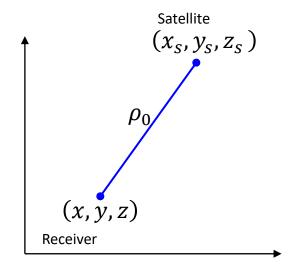
Real Case:
$$\rho = \rho_0 + c(\delta t_r - \delta t_s) + Iono + Tropo + Multipath + \xi$$
 Thermal Noise Multipath Error Satellite Clock Error

Ionospheric Delay

Simplified Equation:
$$\rho = \rho_0 + c(\delta t_r - \delta t_s) + \varepsilon$$

Pseudorange model

$$\rho = \sqrt{(\mathbf{x} - \mathbf{x}_S)^2 + (\mathbf{y} - \mathbf{y}_S)^2 + (\mathbf{z} - \mathbf{z}_S)^2} + c(\delta t_r - \delta t_S) + \varepsilon$$

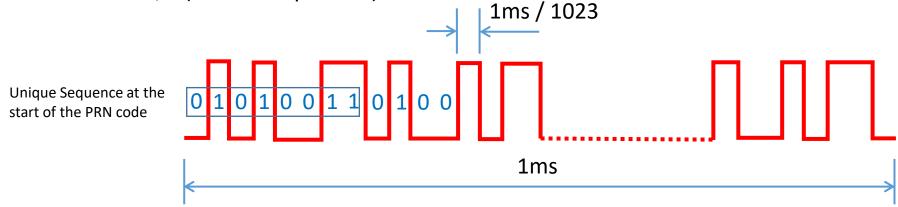

$$\rho_0$$

Where:

x, y, z : Unknown receiver position delta tr: Unknown receiver clock error

epsilon: minimize this error by finding an optimal solution

- In order to solve the above equations, we need "n" simultaneous nonlinear equations from "n" pseudorange observations.
- ➤ We need at least 4 independent observations in order to determine 4 unknown parameters, x, y, z and receiver clock error.


Range between satellite and receiver

PRN (Pseudo Random Noise) Code

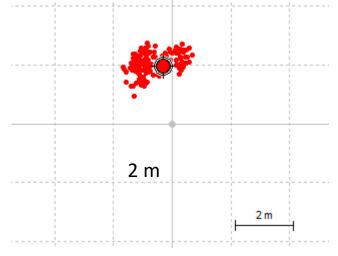
- PRN Code is a sequence of randomly distributed zeros and ones that is one millisecond long.
 - This random distribution follows a specific code generation pattern called Gold Code.
 - There are 1023 zeros and ones in one millisecond.
- Each GPS satellite transmits a unique PRN Code.
 - GPS receiver identifies satellites by its unique PRN code or ID.
- It continually repeats every millisecond
 - The receiver can detect where the PRN code terminated or repeated.
 - A unique sequence of bits indicates start of a PRN code.
- It helps to measure signal transit time and compute pseudorange between the receiver and the satellite
- Its also called C/A (Coarse Acquisition) code in GPS

Pseudorange (Code-Phase Measurement) - 2

1-sequence of PRN Code is 1023 bits, 1ms long. This corresponds to 300Km

1-bit or chip corresponds to 1/1023 ms. This is about 293m (say 300m) in distance.

In the receiver, signals are resampled at certain frequency, say 10MHz.

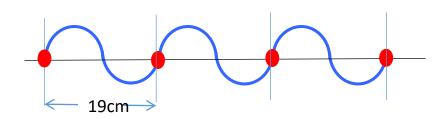

This means every chip will be further divided into 10 smaller chips.

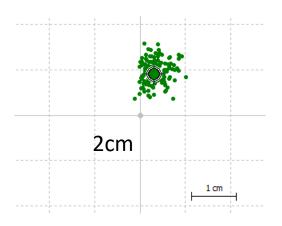
If it is possible to detect code phase at 1/10 of this sampled chip, then range measurement accuracy would be about 300/10/10 = 3m.

However, there are various types of noises and this accuracy may not be possible.

Normally, GPS L1C/A guarantees an accuracy within 10m.

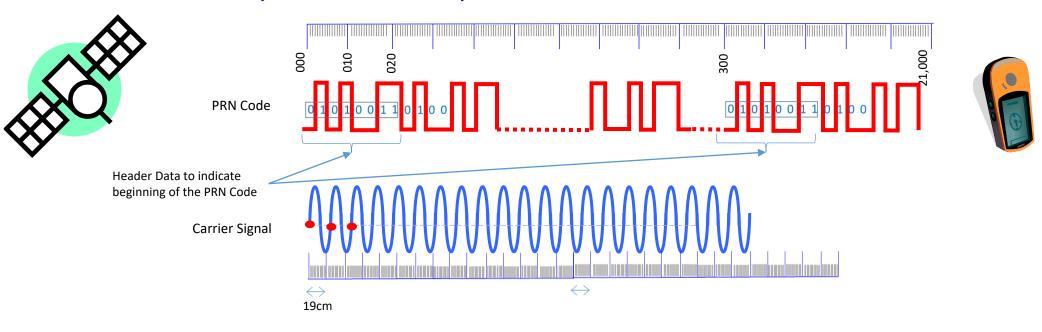
Thus, using Code-Phase (PRN code) measurement, the accuracy will be limited to few meters level.





Carrier-Phase Measurement – 1

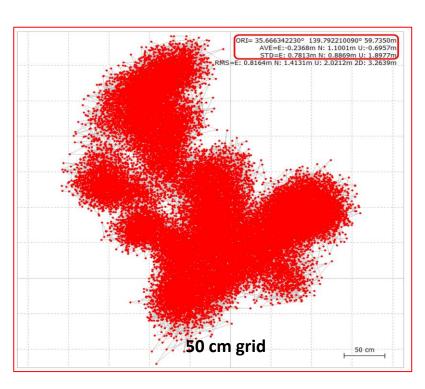
- Carrier-Phase measurement is done by counting the number of cycles coming from the satellite to the receiver.
- However, there are many complexities in measuring total number of cycles (N) from the satellite to the receiver.
 - This is called integer ambiguity
 - This is due to the fact that all cycles are the same and there are no headers to tell the receiver when a new cycle has arrived after number of cycles as in PRN code.
 - A PRN code has a header to tell the receiver that this is the beginning of the PRN code that is 1023 chips long.
 - There are algorithms to solve this problem of ambiguity resolution.
- One complete cycle for GPS L1 band is 19cm long.
 - Thus, if we can measure one wavelength, we can get 19cm accuracy
 - If we can measure 1/10th of a cycle, we get about 2cm accuracy.
 - Thus, Carrier-Phase measurement can provide centimeter level accuracy.



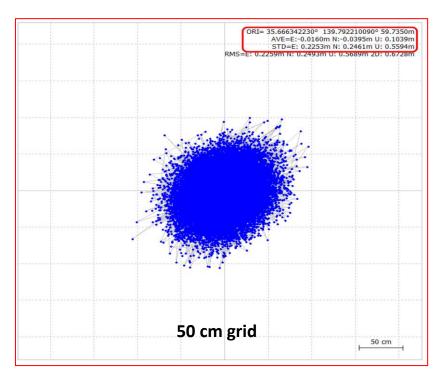
Code-Phase (PRN Code) vs. Carrier-Phase Measurement

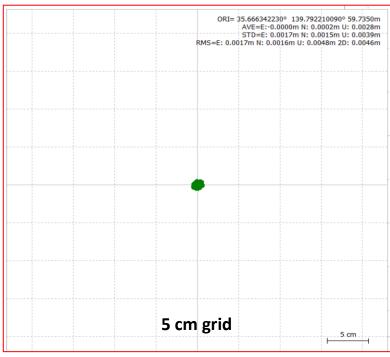
Code-Phase Measurement	Carrier-Phase Measurement
Measuring distance between the satellite and the receiver with a tape that has distance markings as well as distance values written. So that we can measure correct distance.	Measuring distance between the satellite and the receiver with a tape that has distance markings but distance values are not written. We only know that each distance marker is 19cm apart. So, we need to count at certain point the number of cycles separately that's coming to the receiver.
Only provide meter level accuracy	Provides centimeter level accuracy

How to Improve GPS Accuracy?



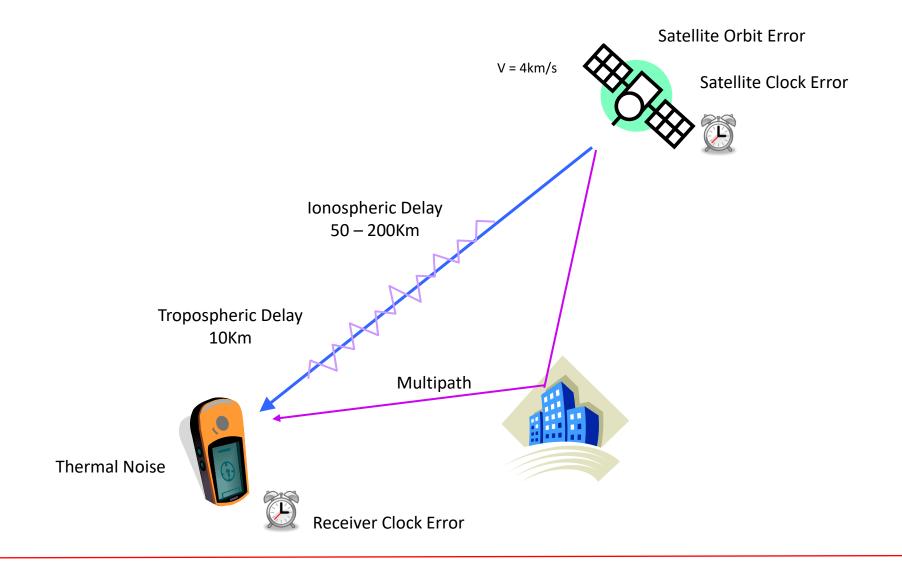
GPS Position Accuracy


How to achieve accuracy from few meters to few centimeters?



SPP (Single Point Position)

DGPS (Differential GPS)
Code-phase observation



RTK (Real Time Kinematic) Carrier-phase observation

Error sources

Errors in GPS Observation (L1C/A Signal)

Error Sources	One-Sign	na Error , m	Comments
Elloi Sources	Total	DGPS	Comments
Satellite Orbit	2.0	0.0	Common errors are removed
Satellite Clock	2.0	0.0	Common errors are removed
Ionosphere Error	4.0	0.4	Common errors are reduced
Troposphere Error	0.7	0.2	Common errors are reduced
Multipath	1.4	1.4	
Receiver Circuits	0.5	0.5	

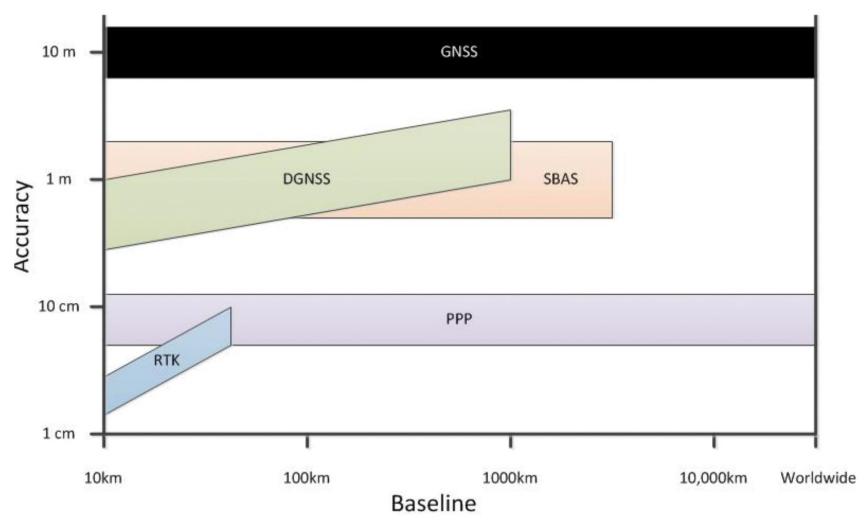
If we can remove common errors, position accuracy can be increased.

Common errors are: Satellite Orbit Errors, Satellite Clock Errors and Atmospheric Errors (within few km)

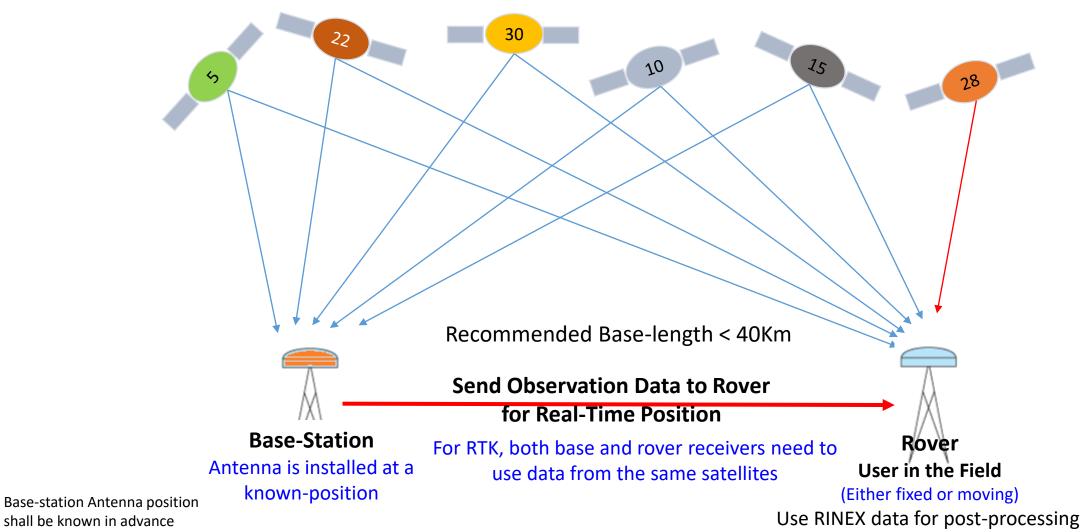
Values in the Table are just for illustrative purpose, not the exact measured values. Table Source: http://www.edu-observatory.org/gps/gps_accuracy.html#Multipath

How to Improve Accuracy?

- Both Code-Phase and Carrier-Phase observations are necessary
 - Carrier-phase provides centimeter level resolution
- Need to remove or minimize the following errors:
 - Satellite Related Error
 - Satellite orbit errors
 - Satellite clock errors
 - Space Related Errors
 - Ionospheric errors
 - Tropospheric erros
 - Receiver Related Errors
 - Receiver clock error
 - Receiver circuit related

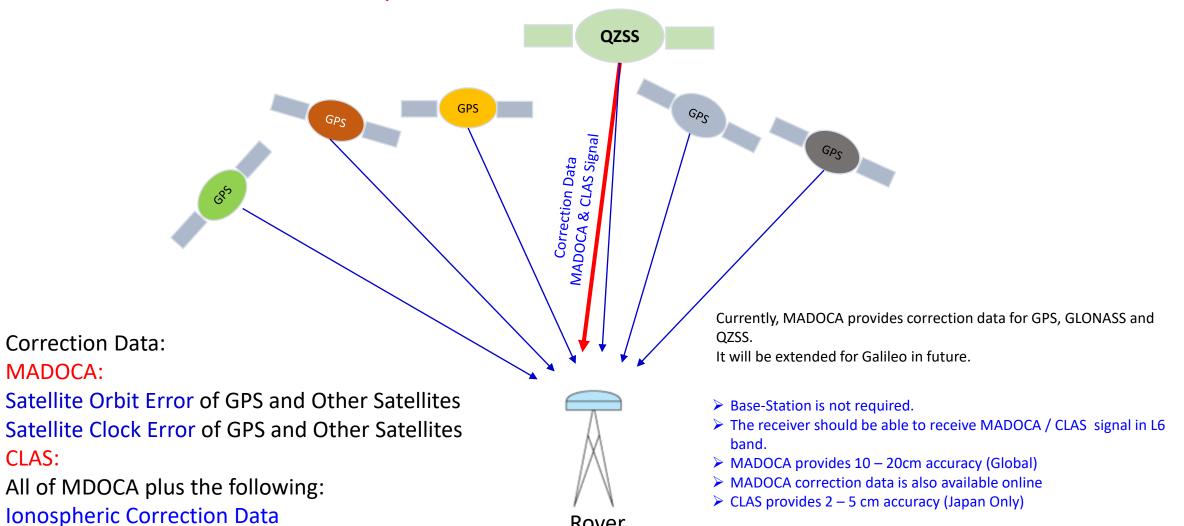

Observation Methods for High-Accuracy

- Basically three types of Observation
 - DGPS (Differential GPS)
 - Code-phase observation
 - Requires Base-station (Reference Station)
 - RTK (Real Time Kinematic)
 - Code-phase and Carrier-Phase Observation
 - Requires Base-station (Reference Station)
 - PPP (Precise Point Positioning)
 - Code-phase and Carrier-phase observation
 - Does not require base-station


Which Method: DGPS, SBAS, RTK, PPP?

How to Improve Accuracy? Use Differential Correction (DGPS / RTK)

shall be known in advance


MADOCA:

CLAS:

How to Improve Accuracy? Use QZSS Service MADOCA or CLAS

Rover

Data Formats:

Standard Formats: NMEA, RINEX, RTCM, BINEX Proprietary Data Formats: UBX, SBF, JPS, Txx/Rxx etc.

References: https://www.nmea.org/

National Marine Electronics Association (NMEA) Format

- NMEA is format to output measurement data from a sensor in a predefined format in ASCII
- In the case of GPS, It outputs GPS position, velocity, time and satellite related data
- NMEA sentences (output) begins with a "Talker ID" and "Message Description"
 - Example: \$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
 - "\$GP" is Talker ID
 - "GGA" is Message Description to indicate for Position Data

References: https://www.nmea.org/

NMEA Data Format

GGA - Fix data which provide 3D location and accuracy data.

\$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

Where: GGA Global Positioning System Fix Data

123519 Fix taken at 12:35:19 UTC 4807.038, N Latitude 48 deg 07.038' N

(do not read it as four thousand eight hundred seven...

Read it as 48 degrees, 07.038 minutes)

01131.000, E Longitude 11 deg 31.000' E

1 Fix quality:

0 = invalid, 1 = GPS fix (SPS), 2 = DGPS fix, 3 = PPS fix,

4 = Real Time Kinematic (RTK FIX)

5 = RTK Float

6 = estimated (dead reckoning) (2.3 feature)

7 = Manual input mode 8 = Simulation mode

08 Number of satellites being tracked 0.9 Horizontal dilution of position

545.4,M Altitude, Meters, above mean sea level

46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid

(empty field) time in seconds since last DGPS update (empty field) DGPS station ID number

*47 the checksum data, always begins with *

RINEX Data Format

- RINEX: Receiver Independent Exchange Format is a data exchange format for raw satellite data among different types of receivers.
 - Different types of receivers may output position and raw data in proprietary formats
 - For post-processing of data using DGPS or RTK it is necessary to use data from different types of receivers. A common data format is necessary for this purpose.
 - Example: How to post process data from Trimble, Novatel and Septenrtio receivers to compute a position?
- RINEX only provides Raw Data. It does not provide position output.
 - User has to post-process RINEX data to compute position
 - Raw data consists of Pseudorage, Carrierphase, Doppler, SNR
- RINEX basically consists of two data types
 - "*.*N" file for Satellite and Ephemeris Related data.
 - Also called Navigation Data
 - "*.*O" file for Signal Observation Data like Pseudorange, Carrier Phase, Doppler, SNR
 - Also called Observation Data
- The latest RINEX version is 3.04, 23 NOV 2018
 - Note: Not all the software and receivers are yet compatible with the latest version
 - Make sure which version of RINEX works the best with your software

RINEX "N" File for GPS

2.11 NAVIGATION DATA GPS (GPS)	RINEX VERSION / TYPE
cnvtToRINEX 2.90.0 convertToRINEX OPR 05-Jul-17 03:38 U	JTC PGM / RUN BY / DATE
	COMMENT
0.8382D-08 0.2235D-07 -0.5960D-07 -0.1192D-06	ION ALPHA
0.8602D+05 0.6554D+05 -0.1311D+06 -0.4588D+06	ION BETA
-0.931322574615D-09-0.355271367880D-14 405504 19	947 DELTA-UTC: A0,A1,T,W
18	LEAP SECONDS
	END OF HEADER
32 17 05 01 00 00 0.0-0.400723423809D-03-0.110276232590D)-10 0.00000000000D+00
0.3700000000D+02-0.8062500000D+01 0.455840416154D	0-08-0.192420920137D+01
-0.353902578354D-06 0.111064908560D-02 0.826455652714D)-05 0.515371503258D+04
0.8640000000D+05-0.782310962677D-07 0.675647076441D	0-01-0.838190317154D-07
0.958529124300D+00 0.221156250000D+03-0.265074890978D)+01-0.796390315710D-08
-0.389659088008D-09 0.1000000000D+01 0.19470000000D)+04 0.0000000000D+00
0.2400000000D+01 0.000000000D+00 0.465661287308D	0-09 0.37000000000D+02
0.79512000000D+05 0.4000000000D+01 0.0000000000D	0.0000000000D+00
24 17 05 01 00 00 0.0-0.341213308275D-04-0.454747350886D)-12 0.00000000000D+00
0.1000000000D+02 0.78781250000D+02 0.459340561950D)-08 0.167267059468D+01
0.404566526413D-05 0.564297637902D-02 0.102464109659D)-04 0.515370226479D+04
0.8640000000D+05-0.782310962677D-07 0.108986675687D)+01 0.484287738800D-07
0.945651423640D+00 0.170906250000D+03 0.490563049326D)+00-0.815641117584D-08
-0.128933942045D-09 0.1000000000D+01 0.19470000000D)+04 0.00000000000D+00
0.2400000000D+01 0.000000000D+00 0.279396772385D	0-08 0.10000000000D+02
0.79218000000D+05 0.4000000000D+01 0.0000000000D	0.00000000000D+00

RINEX "O" File GPS, GLONASS, GALILEO, QZSS, SBAS

	2.	11		OBSE	RVATION	I DATA	Mix	ed (MIX	ED)		RINEX VERSION / TYPE
cnvtl	ľoF	RINEX :	2.90.0	conve	ertToRl	NEX O	PR 05-	Jul-17	03:38	UTC	PGM / RUN BY / DATE
											COMMENT
KMBA											MARKER NAME
KMBA											MARKER NUMBER
DM				UT							OBSERVER / AGENCY
5536F	R50	102		TRIME	BLE NET	'R9	5.2	0			REC # / TYPE / VERS
				UNKNO	OWN EXT						ANT # / TYPE
-395	555	10.89	335	7111.6	5791 3	369779	6.5495				APPROX POSITION XYZ
		0.00	00	0.0	0000		0.0000				ANTENNA: DELTA H/E/N
	1	1	0								WAVELENGTH FACT L1/2
	8	C1	C2	C3	L1	L2	L3	P1	P2		# / TYPES OF OBSERV
	1.	000									INTERVAL
201	17	5	1	0	0	0.	0000000	G	PS		TIME OF FIRST OBS
201	17	5	1	23	59	59.	0000000	G	PS		TIME OF LAST OBS
	0										RCV CLOCK OFFS APPL
1	18										LEAP SECONDS
5	59										# OF SATELLITES
GO	01	23351	23350	0	23350	46694	0	0	23344		PRN / # OF OBS
GO	02	22293	0	0	22293	22286	0	0	22286		PRN / # OF OBS
GC	03	19633	19632	0	19632	39259	0	0	19627		PRN / # OF OBS
GC	05	25303	25302	0	25299	50599	0	0	25297		PRN / # OF OBS
			24708		24709			0	24703		PRN / # OF OBS
G(07	27766	27764	0	27764	55505	0	0	27741		PRN / # OF OBS

RINEX "O" File, Continued from previous slide

S37 86400	0 0 86400	0 0	0 PRN / #	OF OBS
S40 56700	0 0 56700	0 0	0 PRN / #	OF OBS
CARRIER PHASE ME	ASUREMENTS: PHASE	SHIFTS REMOVE	COMMENT	
			END OF I	HEADER
17 5 1 0 0	0.0000000 0 19G	L0G12G14G15G18	24G25G31G32R01R02R0	3
	R.	l1R12R13S28S29	37540	
21375379.406 7	21375388.078 9		112328384.475 7 8	7528640.180 9
		21375388.4144		
20991588.469 7	20991594.418 9		110311559.942 7 85	5957091.970 9
		20991594.7154		
23097788.500 6			121379711.146 6 94	4581624.25147
		23097793.8524		
24539464.648 6	24539473.480 8		128955722.954 6 100	0484989.893 8
		24539473.6604		
21890081.000 6			115033147.870 6 89	9636240.02147
		21890086.5354		
22760846.398 6	22760855.313 9		119609048.681 6 93	3201876.319 9
		22760854.8634		
20303284.266 7	20303294.227 9			3138615.317 9
		20303294.0124		
23440741.258 6	23440748.211 8		123181935.734 6 95	5985961.100 8
		23440748.6214		
21395760.742 7	21395769.145 9			7612113.685 9
		21395769.3054		

Slide: 53

BINEX: Binary Exchange Data Format

- BINEX is a data format to exchange GNSS raw data between the receivers for systems
- Defined by Record IDs
 - Record 0x00 = 0 for site/monument/marker/reference point/setup metadata
 - Record 0x01 = 1 for GNSS navigation information
 - Record 0x02 = 2 for generalized GNSS
 - Record 0x03 = 3 for generalized ancillary site data
 - Record 0x04 = 4 for receiver internal state data
 - Record 0x05 = 5 for processed results, e.g. PVT
 - Record 0x7d = 125 for receiver internal state data prototyping
 - Record 0x7e = 126 for ancillary site data prototyping
 - Record 0x7f = 127 for GNSS data prototyping
- Records may have Sub-Record IDs

RTCM

- RTCM: Radio Technical Commission for Maritime Services
 - An internationally accepted data transmission standard for base-station data transmission to a rover. The standards are defined and maintained by RTCM SC-104
 - Provides GNSS Raw Data in compressed format
 - Major standard for real-time data exchange
- RTCM SC-104 (Special Committee 104)
 - Defines data formats for Differential GPS, RTK
- The Current Version is RTCM-3 (10403.3)
- Refer https://www.rtcm.org/ for detail information and document
 - A normal user does not need RTCM document.
 - GNSS receivers with base-station capabilities will setup necessary messages for RTK
 - If you are developing a system or application you may need it

RTCM

• MT 1- 100 : Experimental Messages

• MT 1001 – 1230 : GNSS Messages

• MT 4001 – 4095 : Proprietary Messages

• Example: Observation Messages

• GPS L1 MT: 1001, 1002

• GPS L1/L2 MT: 1003, 1004

• GLONASS L1 MT: 1009, 1010

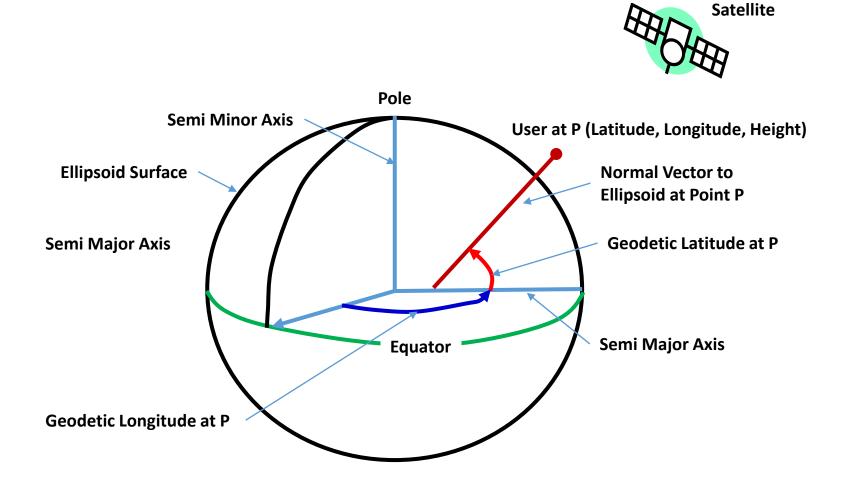
• GLONASS L1/L2 MT: 1011, 1012

• Station Coordinates MT: 1005,1006

Antenna Description MT: 1007,1008

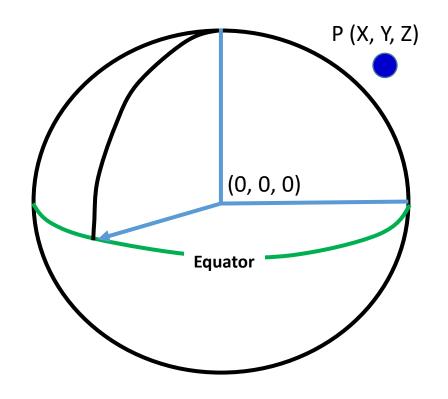
• Example: MT1004

- Extended L1&L2 GPS RTK Observables
- This GPS message type is the most common observational message type, with L1/L2/SNR content.



Coordinate Systems

Geodetic Coordinate System



ECEF (Earth Centered, Earth Fixed)

ECEF Coordinate System is expressed by assuming the center of the earth coordinate as (0, 0, 0)

Coordinate Conversion from ECEF to Geodetic and vice versa

Geodetic Latitude, Longitude & Height to ECEF (X, Y, Z)

$$X = (N + h) \cos \varphi \cos \lambda$$

$$Y = (N + h) \cos \varphi \sin \lambda$$

$$Z = [N(1 - e^2) + h] \sin \varphi$$

$$\varphi = Latitude$$
 $\lambda = Longitude$
h = Height above Ellipsoid

a = semi-major axis
b = semi-minor axis
$$e^2 = 1 - (b^2/a^2)$$

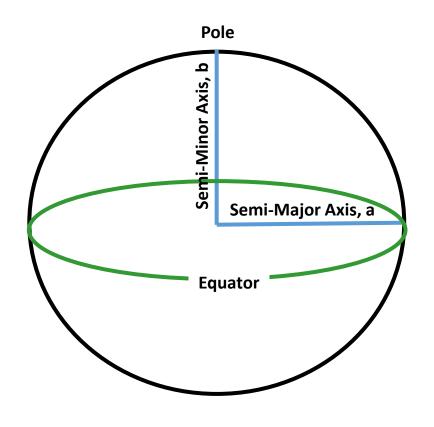
ECEF (X, Y, Z) to Geodetic Latitude, Longitude & Height

$$\varphi$$
=atan $\left(\frac{Z+e^2b \sin^3\theta}{p-e^2a\cos^3\theta}\right)$

$$\lambda$$
=atan2(y , x)

$$h = \frac{P}{\cos \varphi} - N(\varphi)$$

$$P = \sqrt{x^2 + y^2}$$

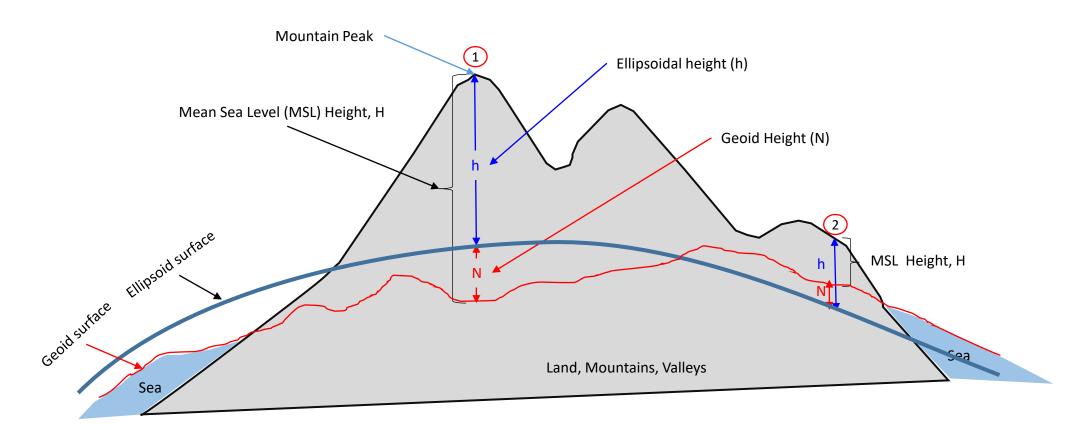

$$\theta = atan\left(\frac{Za}{Pb}\right)$$

$$N(\varphi) = \frac{a}{\sqrt{1 - e^2 sin^2 \varphi}}$$

Geodetic Datum: Geometric Earth Model

GPS uses WGS-84 Datum

But, topographic maps and many other maps use different datum. Before using GPS data on these maps, its necessary to convert GPS coordinates from WGS-84 to local coordinate system and datum. Many GPS software have this tool. Also, GPS receivers have built-in datum selection capabilities.


Check your receiver settings before using.

WGS-84 Geodetic Datum Ellipsoidal Parameters
Semi-Minor Axis, b = 6356752.3142m
Semi-Major Axis, a = 6378137.0m
Flattening, f = (a-b)/a
= 1/298.257223563
First Eccentricity Square = e^2 = 2f-f^2
= 0.00669437999013

Ellipsoid, Geoid and Mean Sea Level (MSL)

MSL Height (H) = Ellipsoidal height (h) – Geoid height (N) Geoid Height is negative if its below Ellipsoidal height Example at point (1): h = 1200m, N = -30mH = h - N = 1200 - (-30) = 1200 + 30 = 1230m Example at point (2): h = 300m, N = +15mH = h - N = 300 - 15 = 285m

Height Data Output in u-blox Receiver, NMEA Sentence, \$GNGGA Sentence

\$GNVTG,,T,,M,0.010,N,0.018,K,D*30

MSL (Altitude)

Geoid Height

\$GNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

\$GNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1*06

\$GNGSA,A,3,11,12,04,24,19,31,33,,,,,0.92,0.48,0.78,3*00

\$GNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08

\$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C

\$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67

\$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D

\$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E

\$GPGSV,5,5,17,199,46,201,37,1*66

\$GAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72

\$GAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43

\$GBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C

\$GBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C

\$GBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71

\$GBGSV,4,4,15,30,05,306,36,32,17,206,42,33,48,055,46,1*4F

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

	IMEA - GxGGA (Global Positioning System Fix Data)					
\setminus						
	Parameter	Value	Unit	Description		
	UTC	012040.00	hhmmss.sss	Universal time coordinated		
	Lat	3554.18235	ddmm.mmmm	Latitude		
	Northing Indicator	N		N=North, S=South		
	Lon	13956.35868	dddmm.mmmm	Longitude		
	Easting Indicates	E		E=East, W=West		
	Status	2		0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning		
	SVs Used	12		Number of SVs used for Navigation		
	HDOP	0.48		Horizontal Dilution of Precision		
	Alt (MSL)	54.4	m	Altitude (above means sea level)		
	Unit	M		M=Meters		
	Geoid Sep.	39.6	m	Geoid Separation = Alt(HAE) - Alt(MSL)		
	Unit	М		M=Meters		
	Age of DGNSS Corr	0.0	s	Age of Differential Corrections		
	DGNSS Ref Station	0000		ID of DGNSS Reference Station		

The NMEA sentences in this figure are from u-blox receiver.

NMEA format uses "Mean Sea Level" for height data (shown in blue texts).

Also it provides Geoid Height (Geoid Separation) value.

GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts).

This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF>

altRef → Altitude above user datum ellipsoid

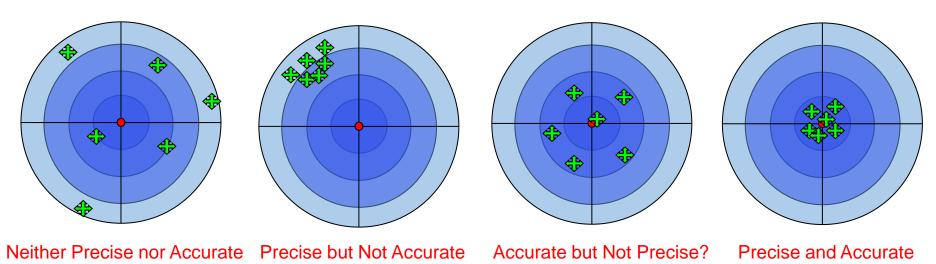
Points to Be Careful in GPS Survey

• Datum

- Which Datum is used for GPS Survey?
- By default, GPS uses WGS-84
- But, your Map may be using different datum like Everest
 - Make Sure that Your Map and Your Coordinates from the GPS are in the same Datum, if not, datum conversion is necessary
 - You can get necessary transformation parameters from your country's survey department

Height

- Which Height is used?
- By default GPS uses Ellipsoidal Height
- But, your Map may be using Mean Sea Level (MSL or Topographic) Height
 - You need to convert from Ellipsoidal Height into MSL Height
 - Use Ellipsoidal and Geoid height Difference Data for your survey region
 - You can get it from your country's survey office


GNSS Errors

Background Information: Accuracy vs. Precision

- Accuracy
 - Capable of providing a correct measurement
 - Measurement is compared with true value
 - Affected by systematic error
- Precision
 - Capable of providing repeatable and reliable measurement
 - Statistical analysis of measurement provides the precision
 - Measure of random error
 - Systematic error has no effect

GNSS Measurement Errors

Measure	Abbreviation	Definition
Root Mean Square	RMS	The square root of the average of the squared errors
Twice Distance RMS	2D RMS	Twice the RMS of the horizontal errors
Circular Error Probable	СЕР	A circle's radius, centered at the true antenna position, containing 50% of the points in the horizontal scatter plot
Horizontal 95% Accuracy	R95	A circle's radius, centered at the true antenna position, containing 95% of the points in the horizontal scatter plot
Spherical Error Probable	SEP	A sphere's radius centered at the true antenna position, containing 50% of the points in the three dimensional scatter plot

Source: GPS Accuracy: Lies, Damn Lies, and Statistics, GPS World, JAN 1998 https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/

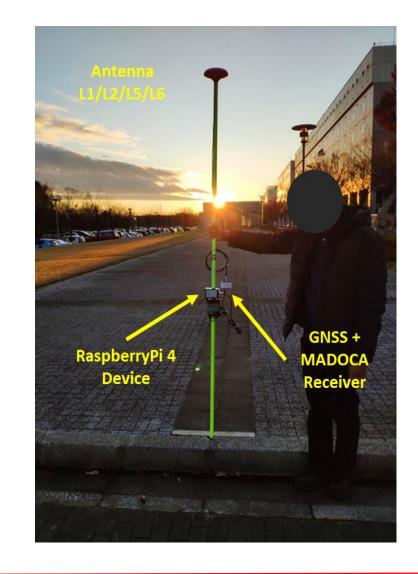
Commonly Used GNSS Performance Measurements

- TTFF
 - True Time to First Fix
 - Parameter: Cold Start, Warm Start, Hot Start
- Standard Accuracy
 - Accuracy attainable without any correction techniques
- DGPS Accuracy
 - Accuracy attainable by differential correction data
 - Code-phase correction
- RTK Accuracy
 - Accuracy attainable by differential correction data
 - Use both Code-Phase and Carrier Phase correction

TTFF and Typical Example Values

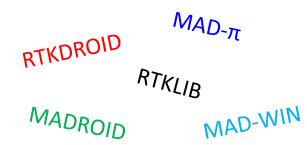
• TTFF

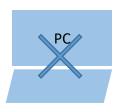
- Cold Start : < 36 seconds
 - Time required to output first position data since the receiver power is on
 - No reference data like time or almanac are available
- Warm Start : < 6 seconds
 - Time required to output first position data since the receiver power is on with the latest satellite almanac data in the receiver's memory
 - Time and almanac related reference data are already known
- Hot Start : < 1 second
 - Receiver has already output position data
 - Time to reacquire an already tracked satellite due to temporary blockage by buildings or trees


Performance Measurement of RTK Accuracy

- A fix error and a variable error with respect to base-length is given
 - Such as : x cm + y ppm
 - Example: 2cm + 1ppm
 - There is a fix error of 2cm plus 1ppm error due to base-length between the Base and Rover
 - 1ppm → 1 parts per million
 - 1cm of error in 1 million centimeter distance between the Base and the Rover
 - 1cm of error in 1000000 centimeter distance between the Base and the Rover
 - 1cm of error in 10000 meter distance between the Base and the Rover
 - 1cm of error in 10 kilometer distance between the Base and the Rover
 - -> 1cm of error for every 10Km of distance between the Base and the Rover
 - + 4cm of error for 40Km of distance between the Base and the Rover
 - Thus the total error is: 2cm + 4cm due to 40Km of base length
 - The longer the base-length, the larger the error
 - Do not assume that this error is linear
 - And it may not be valid for longer base-lines
 - Normally the recommended base-length for RTK for a Geodetic Receiver is 40Km

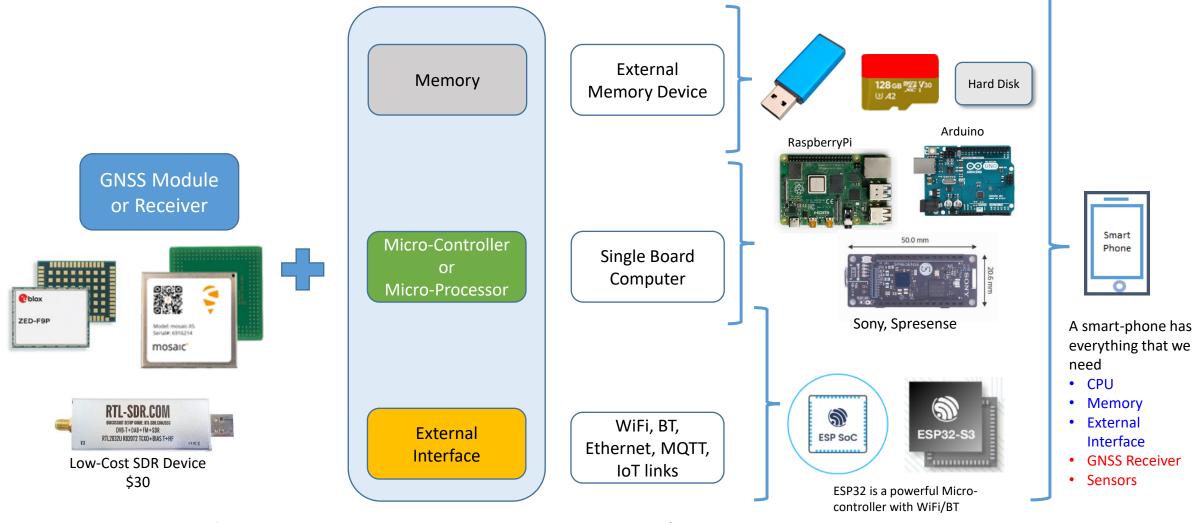
Low-Cost High-Accuracy Receiver Systems RTKDROID, MADROID, MAD-WIN, MAD- π



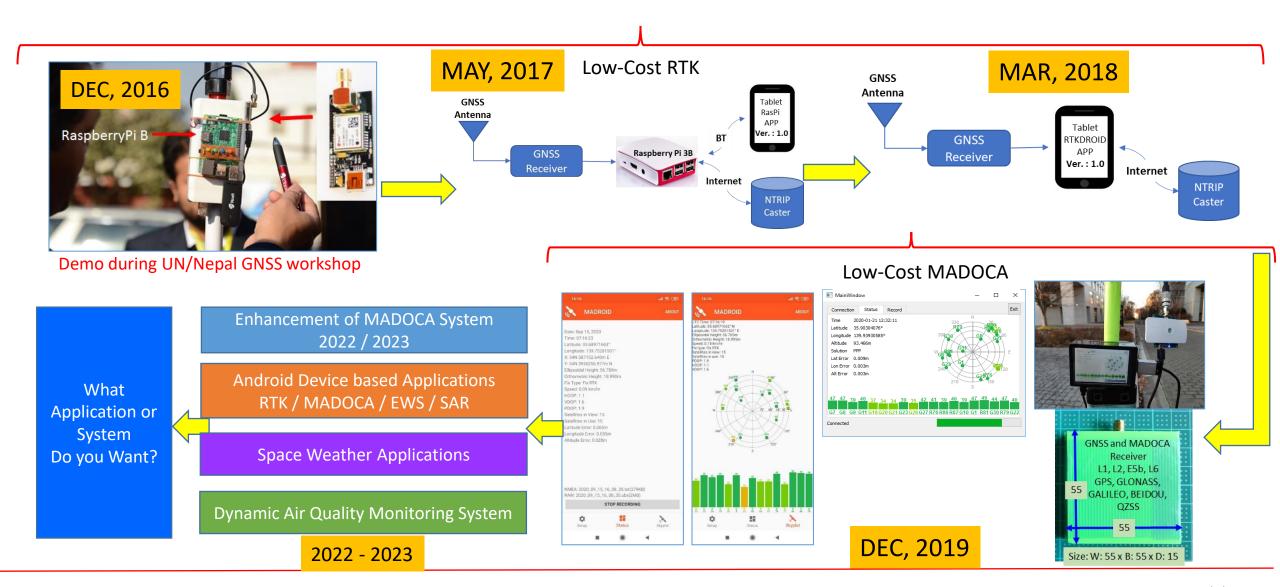


Objectives

- Develop Low-Cost High-Accuracy Positioning Systems (L-CHAPS)
 - System Integration of commercially available receiver or module
 - For RTK and MADOCA
 - Avoid use of computer to minimize the cost
 - Use Single Board Computer (SBC)
 - RaspberryPi, Arduino, Spresense
 - Use Tablet or Smart-Phone
 - Android devices are quite flexible and easier to use
- Develop Easy to Use System in Field
 - A user without GNSS knowledge shall be able to use
 - Self-understanding interface
 - Suitable for remote operation and data logging
 - Operate with mobile power-banks
- Promote GNSS and MADOCA Technologies Abroad through
 - Lectures, Trainings, Seminars, Workshops and Events
 - Joint Research and Joint Projects



How to Make a Low-Cost GNSS Receiver System?



- Note: We use these modules for high accuracy positioning system based on RTK and MADOCA PPP or other GNSS/QZSS special applications.
- There are many other GNSS modules as well. We have no intention of any purpose to name some of the makers here.

Low-Cost High-Accuracy Receiver system Development Cycle

Our Definition of Low-Cost High-Accuracy

	Туре	Target Cost	Current Cost	Description	Difficulties
Cost	RTK	\$100	\$300 - \$600	Single or Dual Frequency Receiver Dual Frequency Antenna RaspberryPi Device	
	MADOCA	\$300	\$500 - \$1,000	Dual Frequency GNSS Receiver Triple Frequency GNSS Antenna RaspberryPi Device	Low-cost MADOCA module is not yet available off-the-shelf Cost factor of Antenna

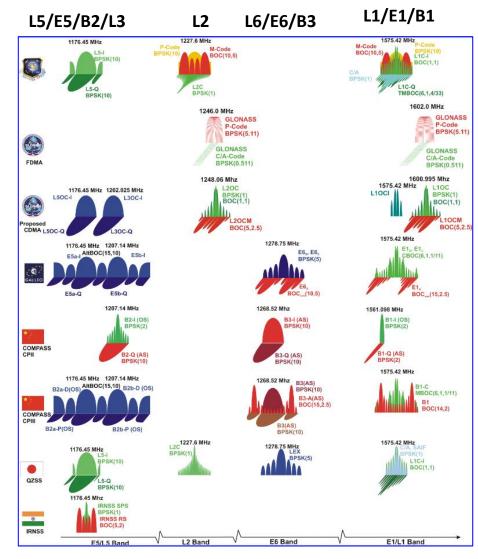
• Cost of accessories, cables, connectors and power supply unit are not included

High-End Survey Grade Receivers

Multi-frequency

• GPS : L1/L2/L5

• GLONASS : L1/L2/L3

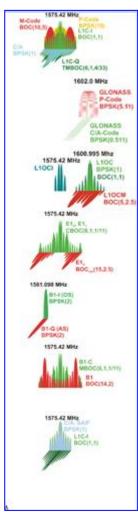

• GALILEO : E1/E5/E6

• BDS : B1/B2/B3

• QZSS : L1/L2/L5/L6

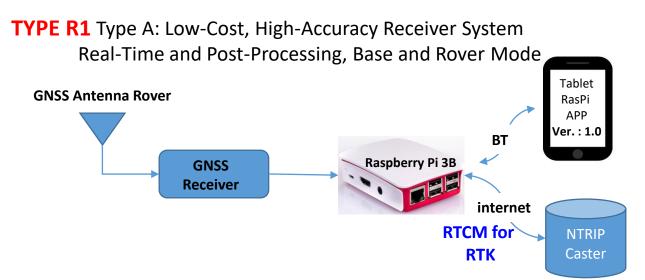
• NAVIC : L5/S

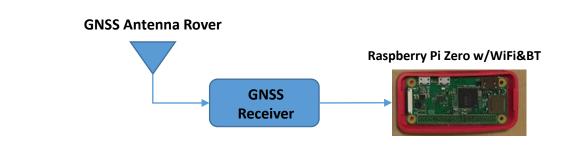
- Multi-system
 - GPS, GLONASS, GALILEO, BeiDou, QZSS, NAVIC, SBAS etc
- Price varies from \$1,000 to \$30,000 or more

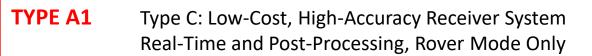


Low-Cost Receivers

- Multi-System
 - GPS, GLONASS, GALILEO, BeiDou, QZSS, SBAS etc
- Basically Single Frequency
 - L1/E1/B1-Band
 - Very soon: Multi-System, Multi Frequency, L1/L2 or L1/L5
 - Future trend for Mass Market System will be L1/L5
 - Some chip makers have already announced Multi-System, Multi-Frequency GNSS Chips for Mass Market
- Low Cost:
 - Less than \$300 (Multi-GNSS, L1 Only) including Antenna and all necessary Hardware, Software
 - Our target is within \$100 including everything.

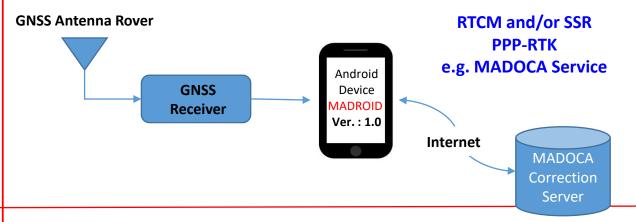





The University of Tokyo Low-Cost RTK Receiver System

TYPE R2 Type B: Low-Cost, High-Accuracy Receiver System For Post-Processing & Rover Mode Only

GNSS Antenna Rover

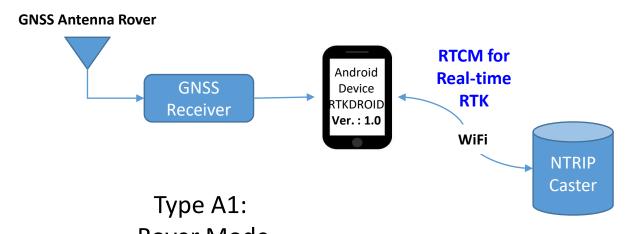

GNSS
Receiver

Android
Device
RTKDROID
Ver.: 1.0

Internet

NTRIP
Caster

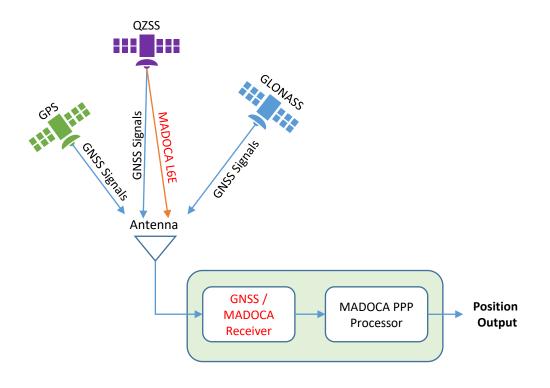
Type D: Low-Cost, High-Accuracy Receiver System Real-Time and Post-Processing, Rover Mode Only

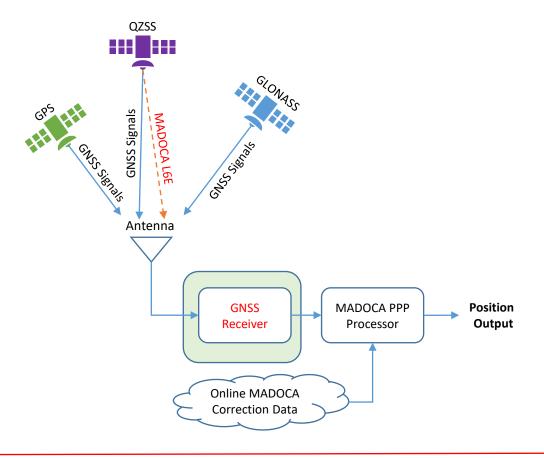


Slide: 78

Type – A1: GNSS Receiver with Android Device

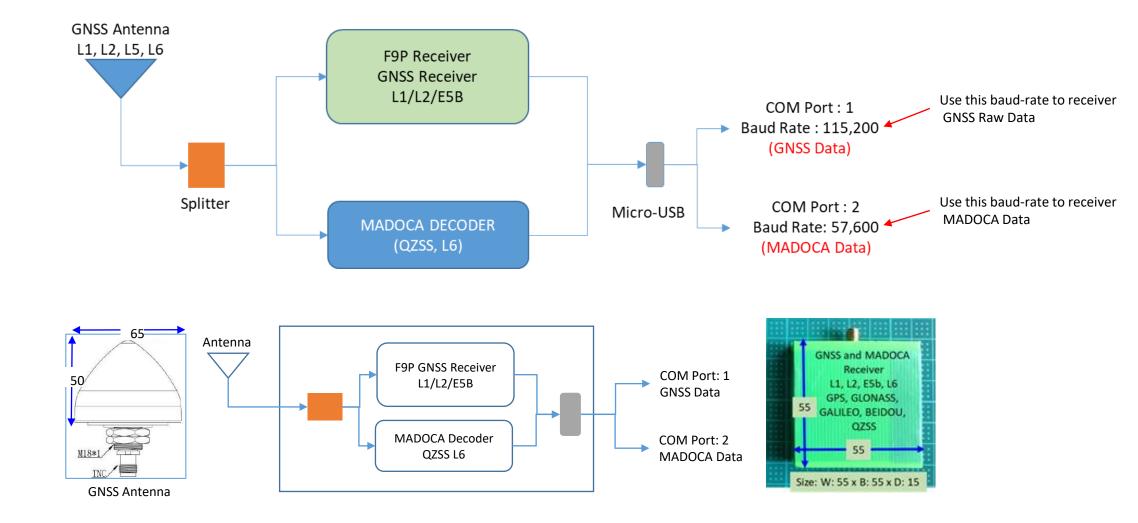
Rover Mode
Real-Time and Post-Processing RTK
Based on RTKLIB Engine
Real-time processing in Android Device
APP: RTKDroid


GNSS Receiver Module

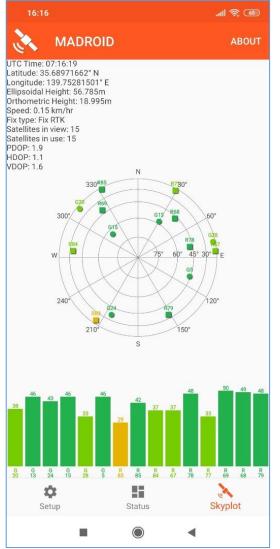


MADOCA System: Direct from QZSS or Online Correction Data

GNSS Receiver + MADOCA Decoder


GNSS Receiver Only

MADOCA PPP Receiver System


Screen Shots of RTKDROID and MADROID

Connect GNSS receiver to Android device

(1) RTKDROID :
For RTK or PPK

(2) MADROID:
for MADOCA-PPP,
MADOCA-PPP/AR (future)

PPP-Kinematic

Start/Stop

Processing Mode

O PPP-Static

ROVER MADOCA

MAD-WIN / MAD-PI / MADROID

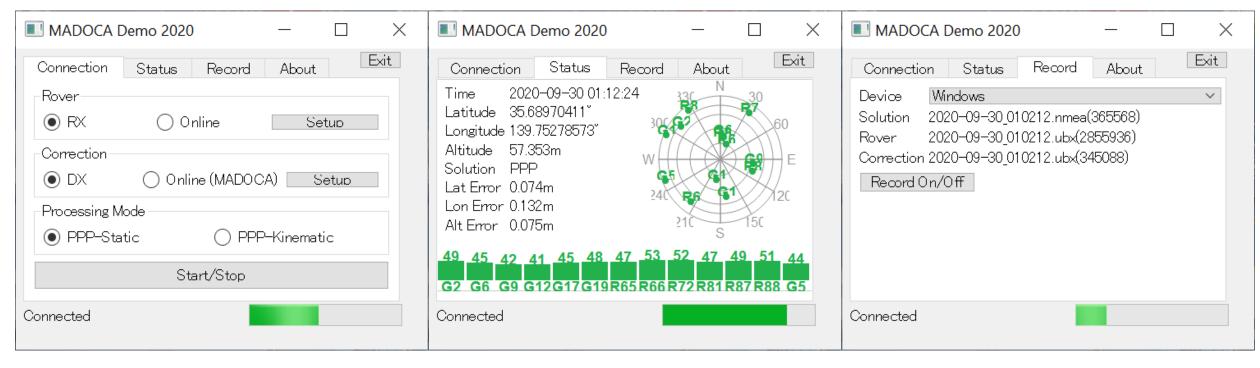
MAD-WIN MAD-PI MADROID MADOCA 2022 X USB-Serial (Dual Channe... Exit Exit Connection Status Record About 2021-10-04 13:31:04 Rover RX Online (GNSS) Setup **Processing Settings** Correction Elevation Mask 0 ○ sx DX Online (MADOCA) Setup

546 B/s

Latitude: 35.857 Longitude: 139.8604 Ilipsoidal Height: 56.505m Irthometric Height: 18.454m Ippeed: 0.19 km/hr AS-ANT2BCAL NTRIP Settings 157.82.223.139 2101 START ROVER

MAD-WIN / MAD-PI / MADROID Software Specifications

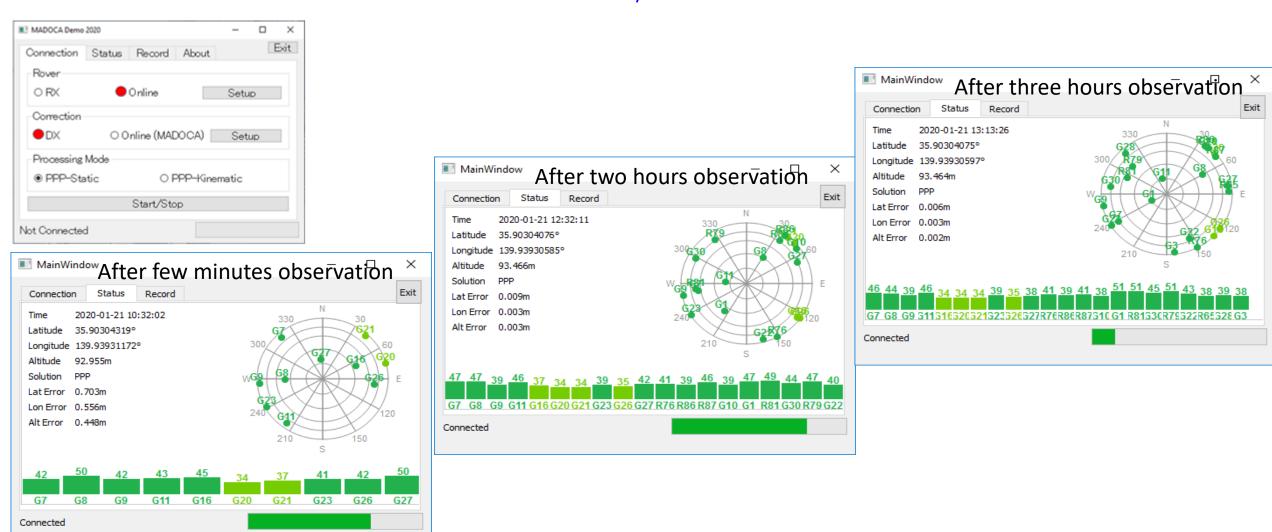
	MAD-WIN	MAD-π	MADROID
Platform / OS	Windows	RaspberryPi 3B or 4B	Android Device
GNSS Receiver	Default : u-blox F9P Other: Any dual-frequency Receiver	Default : u-blox F9P only	Default : u-blox F9P Other: Any dual-frequency Receiver
MADOCA Receiver	U-blox D9C MOSAIC-RIB / MOSAIC-HAT	U-blox D9C	U-blox D9C
GNSS Receiver Data Format	UBX, SBF, RTCM3, BINEX	UBX, SBF, RTCM3	UBX
MADOCA Correction Data Format (Direct from Receiver)	UBX or SBF	UBX only	UBX Only
MADOCA Correction Data Format (Online)	Online Services: NTRIP Address UBX or SBF or RTCM3	Online Services: NTRIP Address UBX or RTCM3	Online Services: NTRIP Address UBX or RTCM3
Other		 Auto-breakdown of files at 6hour interval for continuous logging BT link to external device 	 Local Correction (if available) Test Purpose Only
System Architecture	Antenna L1/L2 GNSS + MADOCA Decoder (Windows)	Antenna L1/L2 GNSS + MADOCA Decoder Raspberry Pi 3B or 4B	Antenna L1/L2 GNSS + MADOCA Decoder


New MAD-WIN / MAD-PI / MADROID Software Specifications

	New MAD-WIN	New MAD-π	New MADROID (Not Released yet)
Platform / OS	Windows	RaspberryPi 3B or 4B	Android Device
GNSS Receiver	Default : u-blox F9P Other: Any dual-frequency Receiver	Default : u-blox F9P only	Default : u-blox F9P Other: Any dual-frequency Receiver
MADOCA Receiver	U-blox D9C MOSAIC-RIB / MOSAIC-HAT	U-blox D9C	U-blox D9C
GNSS Receiver Data Format	UBX, RTCM3	UBX, RTCM3	UBX
MADOCA Correction Data Format (Direct from Receiver)	UBX or SBF	UBX only	UBX Only
MADOCA Correction Data Format (Online)	Online Services: NTRIP Address UBX or SBF	Online Services: NTRIP Address UBX or SBF	Online Services: NTRIP Address UBX
Other	Auto breakdown of files at one hour interval	 Auto-breakdown of files at 6hour interval for continuous logging BT link to external device 	Local Correction (if available) Test Purpose Only
System Architecture	Antenna L1/L2 GNSS + MADOCA Decoder Computer (Windows)	Antenna L1/L2 GNSS + MADOCA Decoder Raspberry Pi 3B or 4B	Antenna L1/L2 GNSS + MADOCA Decoder Page 12 August 12

MAD-WIN / MAD-PI User Interface

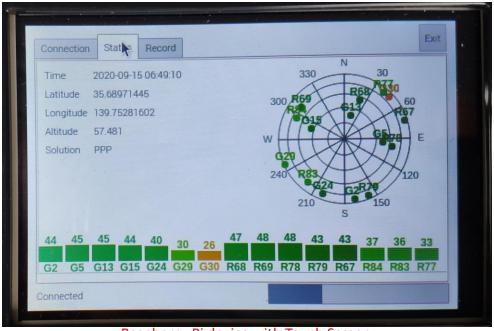
Log Files:


- 1. Solution: MADOCA PPP Solution in NEMA format
- 2. Rover: Rover RAW Data in receiver's proprietary format Can be used for PPK (Post-Processing Kinematic) Solution or Post-Processing PPP
- 3. Correction: MADOCA PPP Correction Data in receiver's proprietary format
 Can be used for Post-Processing MADOCA



MAD-WIN Data Observation

Receiver: Online receiver access in Kashiwa / Correction Data: MADOCA Receiver in Bali



MAD-PI:MADOCA with RaspberryPi Device

- MAD-Pi has been tested with RaspberryPi-3B device
 - It also works with RaspberryPi-4B
 - If the device does not work, please try with a different USB port
- Do not remove and insert SD Card several times. It may get damaged.
- Observation data can be logged to an external USB memory disk. Memory drive of upto 64GB is supported.
 - Files are created at 6-hour interval with Date/Time based filename.
- Ras-Pi 4 device consumes more power than Ras-Pi 3 device.
 Continuous operation of the device will generate heat. Keep the device in well ventilated area
 - Do not keep the device in a closed box
- We have set both Ras-Pi 3 and Ras-Pi 4 devices with touch screens for easy operation.
 - Mouse and External keyboard can be connected either via BT or USB ports
- Ras-Pi device can be connected by an Android device using BT

Raspberry-Pi device with Touch Screen

