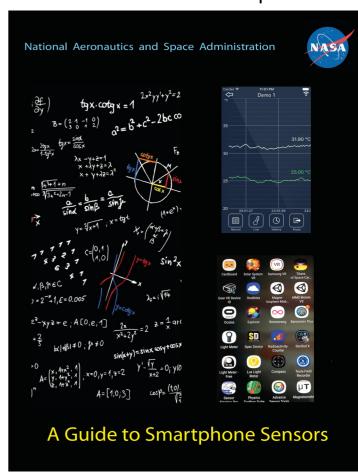


Ambient-Aware PNT

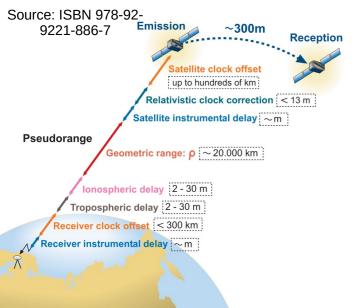
Prof Dr Renato Filjar,

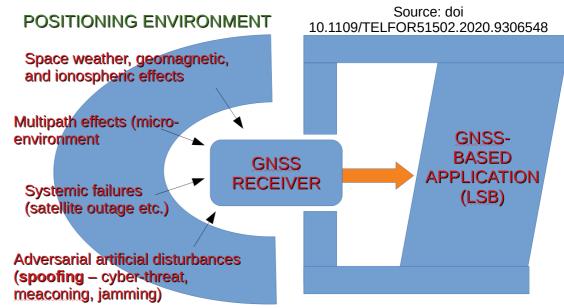

Laboratory for Spatial Intelligence, Krapina University of Applied Sciences, Krapina, CROATIA, and Faculty of Engineering, University of Rijeka, Rijeka, CROATIA

Ambient-Aware PNT (R Filjar, Croatia)

Content of presentation

- Problem statement and motivation
- State-of-the-art
- Ambient-Aware (AA) GNSS-based PNT
- Implementation
- Validation
- Discussion

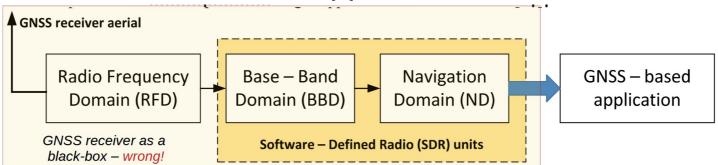

Source: https://spacemath.gsfc.nasa.gov/Se nsor/SensorsBook.pdf



Ambient-Aware PNT (R Filjar, Croatia)

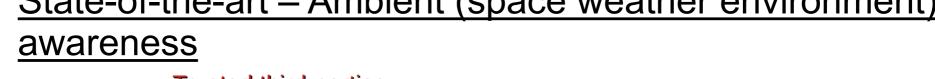
Problem statement and motivation

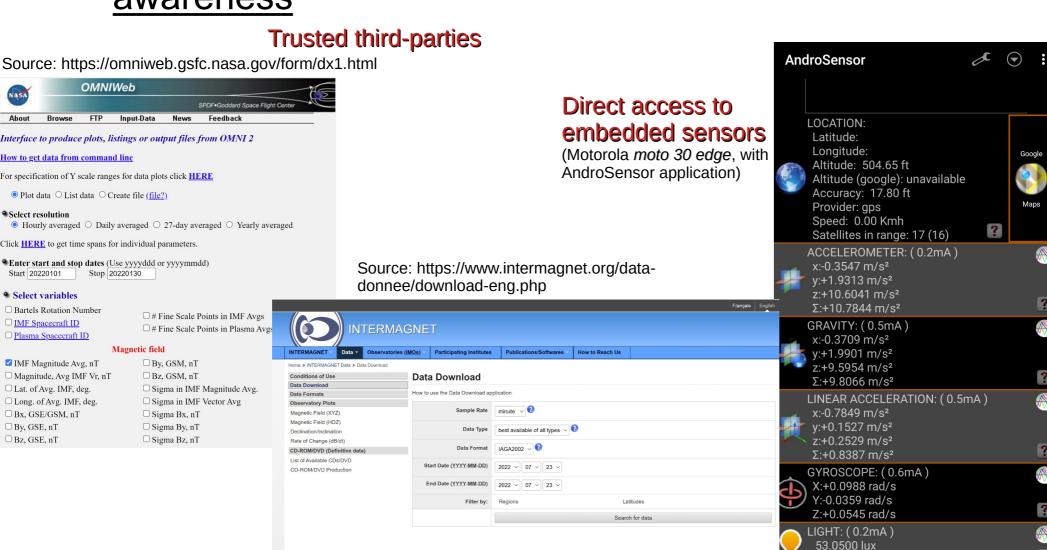
- Natural and artificial interference in the positioning environment (space weather/ionosphere, multipath, spoofing etc.)
- PNT process confined a black-box GNSS receiver
- GNSS PNT QoS guarantees required in the uncontrollable positioning environment
- GNSS PNT QoS and GNSS apps QoS requirements not aligned



Ambient-Aware PNT (R Filjar, Croatia)

State-of-the-art


 GNSS PNT confined in a non-transparent GNSS receiver blackbox, detached from GNSS application



Numerous advancements are not exploited in full: (i) Software-Defined Radio, (ii) statistical & machine learning, artificial intelligence, (iii) computational capacity of mobile devices, (iv) mobile platforms with SDR GNSS receivers & embedded sensors (smartphones, connected vehicles, IoT devices, etc.), (v) open access to position environment data in near-real time (space weather, geomagnetic, and ionospheric indices, spatial databases etc.), (vi) mobile internet and IoT

Ambient-Aware PNT (R Filjar, Croatia)

State-of-the-art – Ambient (space weather environment)

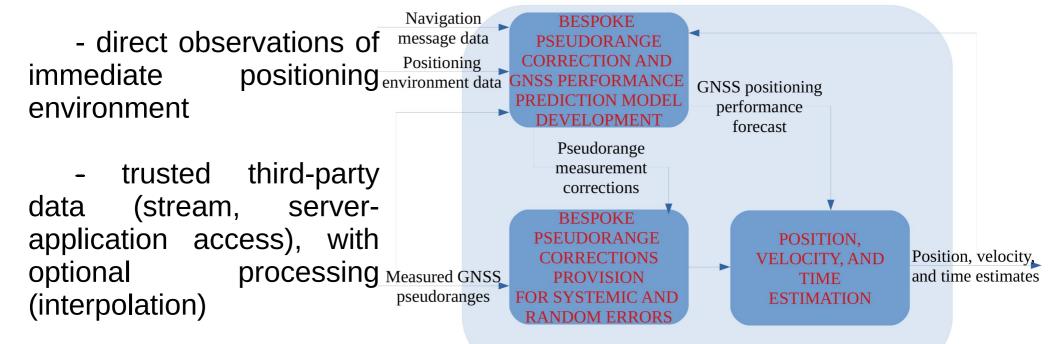
Date modified: 2019-02-08

Ambient-Aware PNT (R Filjar, Croatia)

Ambient-Aware (AA) GNSS PNT

software-defined

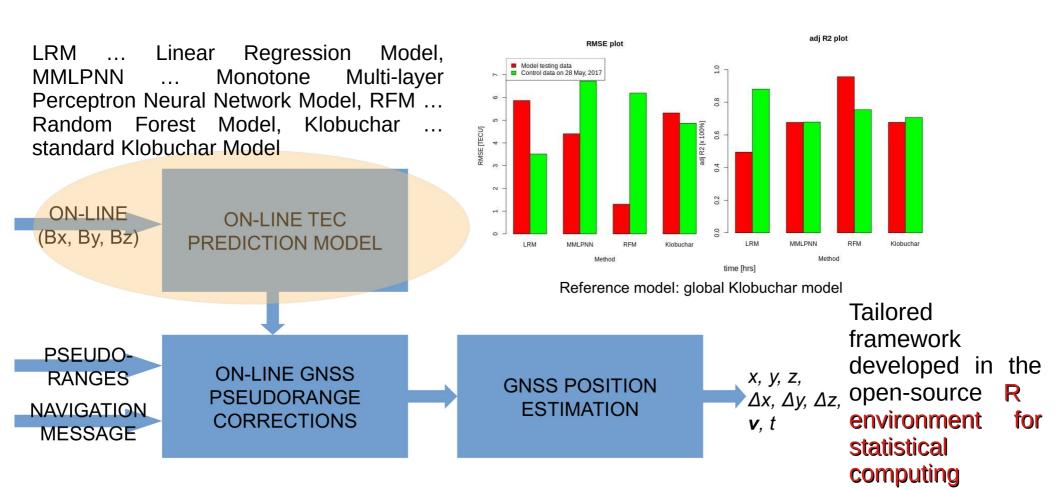
closely integrated


Ambient-Aware PNT (R Filjar, Croatia)

Ambient-Aware (AA) GNSS PNT

- Mitigation of space weather/ionospheric effects on GNSS PNT performance:

Sources: ISBN 978-613-9-90118-0, doi:10.1088/1757-899X/1032/1/012001


NAVIGATION (POSITIONING) DOMAIN

Ambient-Aware PNT (R Filjar, Croatia)

Implementation & Demonstration

 Case-study of a short-term rapidly developing geomagnetic storm in sub-equatorial area (Darwin, NT)

Ambient-Aware PNT (R Filjar, Croatia)

Validation (source: doi: 10.33012/2022.18247)

- Case-study of short-term rapidly developing geomagnetic storm in sub-equatorial area (Darwin, NT)
- Single-frequency GPS-based position estimation, no additional infrastructure utilised → GPS position estimation process selfadapted to the immediate environment conditions
- Ionospheric corrections: (i) Klobuchar model (reference/benchmark), (ii) geomagnetic field density-based statistical learning Linear Regression Model (LRM) (alternative)

in [m]	mean		standard deviation	
	Klobuchar corrections	self-adaptive corrections	Klobuchar corrections	self-adaptive corrections
northing error	-1.5368	-0.1098	2.24106	1.088705
easting error	0.72717	-0.02663	1.878769	0.9983062
vertical error	0.2225	-0.09773	1.29891	0.510632

Ambient-Aware PNT (R Filjar, Croatia)

Discussion

- Proposed utilisation of ambient awareness of immediate GNSS PNT environment conditions for Ambient-Adaptive (AA) PNT.
- Ambient-Adaptive GNSS PNT is inherently infrastructureagnostic → no further investments in infrastrciture is needed!
- GNSS positioning performance demonstrated in the case of short-term rapidly developing ionospheric disturbance.
- The need for space weather/geomagnetic/ionospheric observations and indices data standardisation (access, structure and format) and availability.
- Optimisation of ML/AI-based algorithms for ambient effects correction and PNT
- International activities, in collaboration with International Space Weather Action Teams (ISWAT, COSPAR)

Ambient-Aware PNT (R Filjar, *Croatia*)

Source: https://www.iswat-cospar.org/

Godi Go: Tittpo://www.iowat Goopanorg/					
S: Space weather origins at the Sun	H: Heliosphere variability	G: Coupled geospace system	Impacts		
			Climate		
S1: Long-term solar variability	H1: Heliospheric magnetic field and solar wind	G1: Geomagnetic environment	Electric power systems/GICs		
S2: Ambient solar magnetic field, heating and spectral irradiance	H2: CME structure, evolution and propagation through heliosphere	G2a: Atmosphere variability	Satellite/debris drag		
S3: Solar eruptions	H3: Radiation environment in heliosphere	G2b: lonosphere variability	Navigation/ Communications		
	H4: Space weather at other planets/planetary bodies	G3: Near-Earth radiation and plasma environment	(Aero)space assets functions		
Overarching Activities:	Human Exploration				
Assessment Information Architecture & Data Utilization Innovative Solutions Education & Outreach			Lapioration		

Ambient-Aware PNT (R Filjar, Croatia)

Recommendations

- 1. Ambient (SW/iono) conditions awareness to improve GNSS NT algorithm, as well as GNSS PNT performance and resilience against adverse SW/iono effects.
- 2. Ambient-Adaptive ML/AI-based GNSS ionospheric correction model to be developed based on SW/iono conditions awareness for every PNT process/receiver.
- 3. Ambient (SW/iono) conditions awareness to be obtained by: (i) direct SW/iono observations in the immediate vicinity of receiver, and/or (ii) link to trusted third-party sources.
- 4. International co-operation to be facilitated, established, and operated to:
- 4.1 develop standards for ambient SW/iono data structure, formats, and protocols for internet-based data exchange;
- 4.2 collect, assemble, aggregate, collate, and allow access to location-based real-time and archived ambient SW/iono observations;
- 4.3 foster infrastructure-agnostic Ambient-Adaptive (AA) PNT correction model development, validation, and standardisation;
- 4.4 develop inter-/multi-disciplinary expertise/capacity in support of transition to infrastructure-agnostic Ambient-Aware (AA) GNSS-based PNT.

Ambient-Aware PNT (R Filjar, Croatia)

In appreciation of your attention, and with invitation to participate to

Baška SIF (Spatial Information Fusion) Forum 2024 Baška, Krk Island, Croatia, 16th – 18th June, 2024

Prof Dr Renato Filjar
Laboratory for Spatial Intelligence, Krapina University of Applied
Sciences, Krapina, Croatia, and
Faculty of Engineering, University of Rijeka, Rijeka, Croatia
E-mail: renato.filjar@gmail.com