GNSS RFI Source Localization using Flight Track Data

Gerhard BERZ Focal Point Navigation Infrastructure ATM Directorate, Research & SESAR Division, NAV & CNS Unit gerhard.berz@eurocontrol.int

UN ICG Interference Detection and Mitigation (IDM) Workshop Baska, Croatia, 9 May 2017

The European Organisation for the Safety of Air Navigation

- Detecting GNSS Outages
 - From passive threat monitoring to active intervention in case of relevant events
- Determination of Probable Cause
 - Elimination of Non-RFI Causes
- Localization and Elimination of RFI Source
 - Supporting the chain of detection (Operator / ANSP) to confirmation, characterization and localization (radio regulator) to elimination (law enforcement)

Implementing Mitigation Barriers

Meeting "Stated ATCO Requirement"

- Budapest GPS Outage Simulations:
 - "Tell me when event starts, when it ends, and how many sectors are affected"
 - No simple technical solutions exist today
 - Allows contingency planning through planner ATCO
- Best to monitor at the impact source: aircraft receiver
 - Currently, only pilot can observe receiver outage
 - Subsequent reporting requires support at regional and global level to determine probable cause (only RFI is local problem)
 - Provides essential risk assessment link on operational impact
 - Try to get as much information from the air as possible before starting search on ground: *cooperative approach for efficiency*

GPS OUT Reporting Streams Today

No aggregate vision of events → Incomplete threat picture Resolution depends on awareness of many individuals

Implemented: GNSS in EVAIR

- EVAIR = Eurocontrol Voluntary ATM Incident Reporting
 - Established Safety Process (Confidentiality, Anonymity)
 - 250 Participating Aircraft Operators
 - Coverage: Europe, Middle East, Northern Africa
 - Close cooperation with IATA
 - Part of Network Manager Functions
- Info Bulletin sent beginning 2015 and mid-2016
 - Initial wave of reports received covering 2013/2014
 - Additional reports coming in every few weeks
 - GNSS Outage one issue among many
 - Simple to set up because it is an existing process / framework
 - Sending further awareness materials to aircraft operators

9 **GPS** failure 2013-2016 Unknown; 94; 29% Total loss; 209; 65% **Duration of GPS failure** 2013-2016 1 GPS; 20; 6% 1-5 min; 40; 12% 5-15 min; 44; 14% Unknown; 168; 52% 15-30 min; 44; 14% 30 min-3H; 27; 8%

B777 is most flown type in areas most affected

Most Events Occur at Night!

Specific Actions already facilitated by EVAIR:

- Information Bulletin sent to Airspace Operators in Black Sea / Caspian Sea Region
- NOTAM Issued by Turkey's DHMI (Ankara Region)

ECAC = European Civil Aviation Conference

Moving Towards RFI Localization Support

- Primary current method to detect potential RFI is pilot reporting
 - Pilot reporting by nature not precise about location of event
 - Developing process of what to do with reports
 - Evaluating if meaningful localization can be made possible if flight track data is made available
- Prerequisite is that relatively precise lat/lon/ht of GNSS Outage event start and end is available
 - Either through ADS-B or other airline data reporting system
 - Possible for single, omnidirectional and static RFI source only
 - If search inconclusive using this method, could also be a valuable data point to suspect more sophisticated threat
 - Objective is to reduce RFI source search area for State and reduce associated intervention time

Flight Track Data Possibilities?

- If precise report of start and stop coordinate of outage event are known, bisector line of potential RFI source location can be derived
 - Assumes omnidirectional RFI source and constant aircraft altitude
 - Assumes that loss of tracking and reacquisition thresholds are similar
 - Multiple aircraft reports could lead to localization
- Within limits, a minimum power level can also be hypothesized

Modelling and Visualisation in DEMETER

GPS track 1 (eastbound)-----Possible RFI positionGPS track 2 (southbound)-----Possible RFI position

Figure removed. Work ongoing to obtain agreement from ANSP to show location of outages. [Confidentiality vs. Anonimity: Position Data is never anonymous]

Actual cases will always be coordinated with the ANSP responsible for the affected airspace.

FlightAware Coverage

📕 🗹 PlanePlotter 📕 🗹 FlightFeeder 🗌 🗹 PiAware 📕 🗹 Radarcape

FlightAware Coverage

RFI Localization Process

- EVAIR Reports serve as a trigger for further investigation
 - First check to eliminate non-RFI causes as much as possible
- Then need to rely on public domain ADS-B sources
 - Manage coverage and data quality issues
 - Limitations on data history
 - Limitations on track distribution (due to route network)
 - Recall earlier findings (CNS Team, Avionics White List)
- Options to be investigated:
 - Framework agreement with ADS-B data providers?
 - Publication on Network Manager Operations Portal Nconnect
 - Further investigation of aircraft installed GNSS Rx tracking and acquisition thresholds as a function of ground based RFI type and main airframe type?
 - Future Alternatives: GNSS RX Data, Global Flight Tracking?

- GNSS RFI Mitigation continues to be an exercise in setting up interfaces
 - Current effort on ADS-B track data providers
 - Other venues to be developed: GNSS providers, multi-modal projects (EC), Aircraft OEM's, Airline FOQA Systems, NATO?
 - Developing "GNSS Information Concept" to know what to make available to aircrews and how (NOTAM or alternate channels)
 - Happy to consider any data source incl. ground monitors!
- Focus on short-term implementable options that approach stated ATCO requirement ("tell me which sectors are affected")
- AOB: Related IFIS and ION Paper: RFI Localization using CRPA
 - Published in GPS World Magazine

http://gpsworld.com/tracking-rfi-interference-localization-using-a-crpa/

Requests to UN ICG IDM Workshop

- Support information exchange for aviation with GNSS system operators
 - For both threat monitoring and significant event mitigation
 - Help to identify non-RFI causes (space weather, receiver issues if aware)
- Forward aviation relevant reports to relevant entities (States, Regional Organizations)

• ADS-B Details

Sydney Case: ADS-B Lessons Learned

- ADS-B reports key to identifying probable source location: Aerospace Industrial Park
 - "Search" proved sufficient to terminate 3h event
- Most Ground Monitor Stations didn't see RFI
 - Some outages on WAM network, but difficult to locate
 - Need to evaluate line of sight
- Lessons Learned
 - Aircraft with INS didn't lose NAV
 - Contingency procedures worked
 - Some aircraft GPS receivers didn't recover (even on turnaround!)
 - Air Services Australia recommends recording of GPS status on QAR
 - Ground and aircraft based localization must work in complement
 - Implementation simplest if within existing processes & infrastructure

ADS-B PIC Use for GNSS Monitoring

- ADS-B:
 - Different versions of the ADS-B Out MOPS in use
 - Different ways to encode integrity
 - Not all aircraft are "proper" ADS-B Out:
 - Version 0 implemented on voluntary basis (along with Mode S mandates, ADS-B only certified on a non-interference basis)
 - Later AMC 20-24 certification only applies to subset of fleet
 - Not necessarily using GNSS as position source
 - Some known avionics issues with version 0
- GNSS:
 - Different levels of performance
 - Limited information about the position source (SA On/Off, SBAS etc.)

ADS-B based GNSS Monitoring: Issues

- Difficult Capability to Test without significant RFI Event
 - Study tried to correlate ADS-B Position Integrity Category with events:
 - Known RFI Events
 - Predicted RAIM Outages
 - Iono Events
 - None of the investigated events produced reliable correlation
- But learned about use of ADS-B data
 - Careful filtering of reliable data establish white list?
 - On-board issues usually result in a certain NUCp/NIC behaviour
 - not so common can be filtered out
 - Most of the fleet has stable quality indicators
 - SPI IR implementation of ADS-B Out version 2 (ED-102A / DO-260B) expected to further improve the picture
- Still think that method has promise at least for "massive" RFI events

Position Integrity Category

Ground system notation (Asterix) for integrity containment bound encoding

PIC	Integrity Containment Bound	NUCp ED102/DO260	NIC (+ suppl.) DO260A	NIC (+ suppl.'s) ED102A/DO260B		
				NIC	A/B	A/C
15	not defined					
14	< 0.004 NM	9	11	11	-	-
13	< 0.013 NM	8	10	10	-	-
12	< 0.04 NM		9	9	-	-
11	< 0.1 NM	7	8	8	-	-
10	< 0.2 NM	6	7	7	-	-
9	< 0.3 NM	-	-	6	0/1	1/0
8	< 0.5 NM	5	6 (+ 0)	6	0/0	-
7	< 0.6 NM	-	6 (+ 1)	6	1/1	0/1
6	< 1.0 NM	4	5	5	-	-
5	< 2.0 NM	3	4	4	-	-
4	< 4.0 NM	-	3	3	-	-
3	< 8.0 NM	-	2	2	-	-
2	< 10.0 NM	2	-	-	-	-
1	< 20.0 NM	1	1	1	-	-
0	No integrity (or > 20.0 NM)	0	0	0	-	-