DOT GPS Adjacent Band Compatibility Assessment

UN International Committee on GNSS (ICG) 6th IDM Workshop

May 9-10, 2017

GPS Adjacent Radiofrequency Band Compatibility Assessment

- Identify adjacent band transmit power levels that can be tolerated by existing GNSS receivers for civil applications [excluding certified aviation applications - those are considered in a parallel FAA effort]
- Effort Led By DOT/OST-R/Volpe Center
- Accomplish this through:
 - An open and transparent approach
 - GNSS Receiver and Antenna Testing Radiated, Wired, and Antenna characterization
 - Development of 1 dB Interference Tolerance Masks (ITMs)
 - Development of generic transmitter (base station and handheld) scenarios
 - Inverse and propagation modeling / use case scenarios

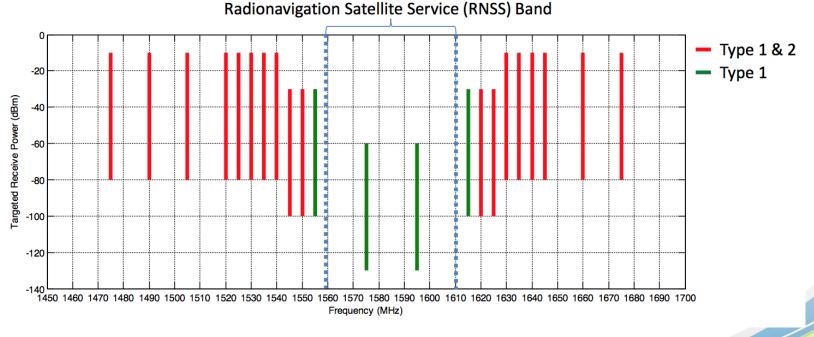
Major Milestones

- Use case data collection effort with Federal Partners and Industry
- Released a public GNSS receiver test plan and developed an in depth GNSS receiver test procedure
- Carried out GNSS testing
 - Radiated test data: collected in an anechoic chamber [White Sands Missile Range (WSMR)]
 - Conducted test data: collected in a laboratory environment [Zeta Associates]
 - Antenna characterization data [The MITRE Corporation]
 - Integrated antennas: collected in an open sky environment
 - External antennas: collected in an anechoic chamber
- Produced 1 dB Interference Tolerance Mask (ITM) results
- Developed use case scenarios and conducted inverse modeling to Determine power levels that can be tolerated
- For more detail see: <u>http://www.gps.gov/spectrum/ABC/</u>

Radiated Testing Overview

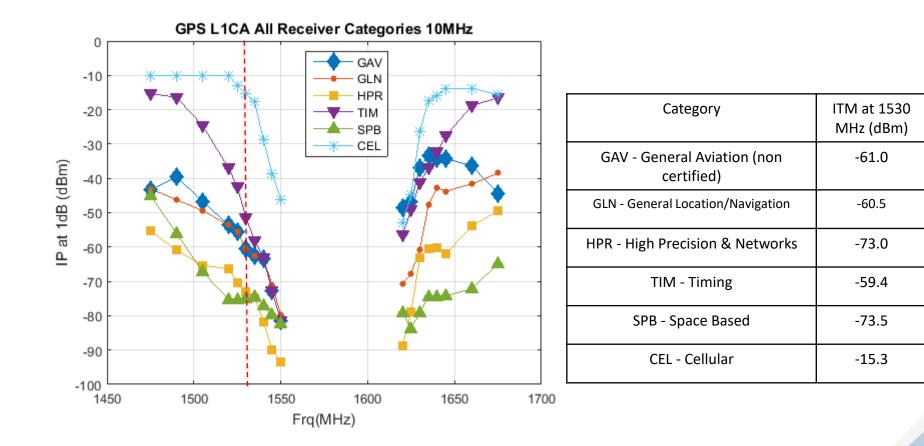
- GNSS receiver testing was carried out April 25-29, 2016 at the Army Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment Facility (EMVAF), White Sands Missile Range (WSMR), NM
- Participation included DOT's federal partners/agencies (USCG, NASA, NOAA, USGS, and FAA) and GPS manufacturers (GM, u-blox, NovAtel, Trimble, John Deere, UNAVCO)

- Air Force/GPS Directorate conducted testing week of April 18th


- 80 receivers were tested representing six categories of GPS/GNSS receivers: General Aviation (non certified), General Location/Navigation, High Precision & Networks, Timing, Space Based, and Cellular
- Tests performed in the anechoic chamber:
 - Linearity (receivers CNR estimators are operating in the linear region)
 - 1 MHz Bandpass Noise, In-band and adjacent band (Type 1)
 - 10 MHz Long Term Evolution (LTE) (Type 2)
 - Intermodulation (effects of 3rd order intermodulation)

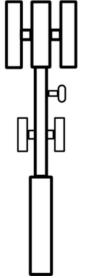
Test Chamber Setup and Tested Signals

Signal
GPS L1 C/A-code
GPS L1 P-code
GPS L1C
GPS L1 M-code
GPS L2 P-code
SBAS L1
GLONASS L1 C
GLONASS L1 P
BeiDou B1I
Galileo E1 B/C


Interference Test Signal Profiles

- Data collected to develop ITM for receivers
 - Carrier signal to noise density ratio (CNR) recorded over varying interference power levels at numerous interference center frequencies
- Data processed to produce ITM

Interference Test Signal Frequencies and Power Profiles


Summary of 10 MHz Bounding Masks GPS L1 C/A

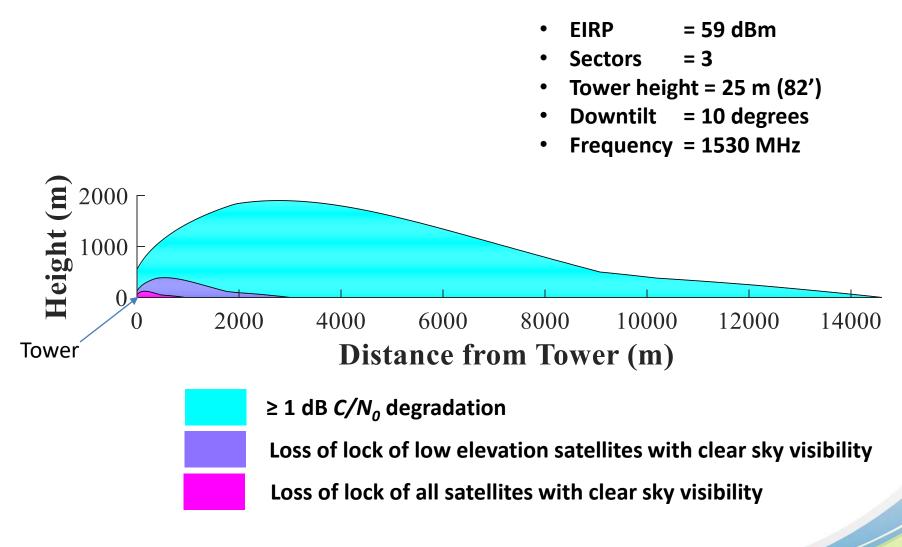
Inverse Modeling/Transmit Power Levels

- Base Station Models
 - Report ITU-R M.2292 4G network characteristics for various deployments
 - Recommendation ITU-R F.1336 antenna characteristics
- Handset/Mobile Device Models
 - 23 dBm EIRP, isotropic transmit antenna, vertical polarization, 2 meter height
- Propagation Loss Models
 - Free-space path loss
 - Two-ray path loss model is expected to show larger impact regions
 - Irregular terrain model will be considered in the future

ITU-R M.2292 Macro Base Stations

Macro Rural

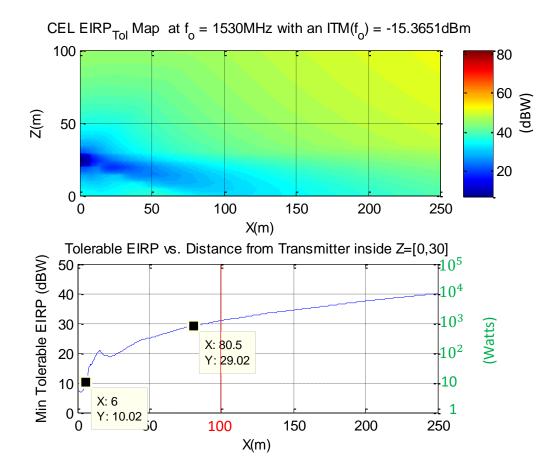
- 18 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 58/61/61 dBm
- 30 m height
- 3 deg downtilt
- > 3 km cell radius


Macro Suburban

- 16 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 56/59/59 dBm
- 30 m height
- 6 deg downtilt
- 0.5 3 km cell radius

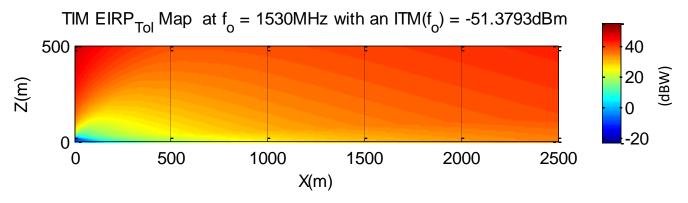
Macro Urban

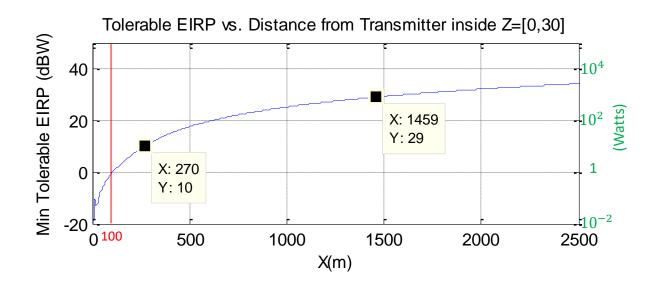
- 16 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 56/59/59 dBm
- 25 m height
- 10 deg downtilt
- 0.25 1 km cell radius


Macro Urban Transmitter* High Precision Receiver, 1530 MHz

* Based on ITU-R M.2292

Inverse Modeling: CEL, 1530 MHz

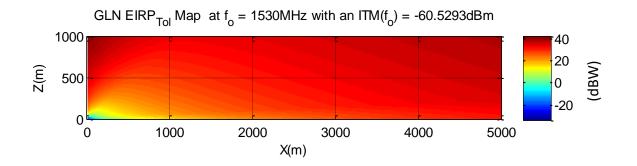

Extent of the impact region: 80 m from Transmitter for EIRP of 29 dBW
 6 m for EIRP of 10 dBW

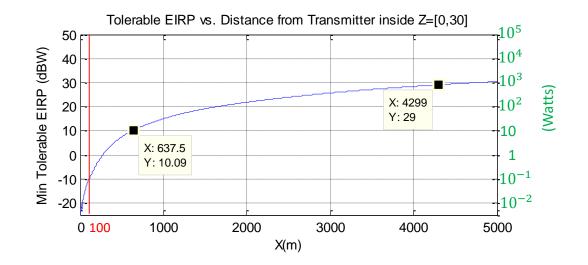


Inverse Modeling: TIM, 1530 MHz

• Extent of the impact region: 1.5 km from transmitter for EIRP of 29 dBW

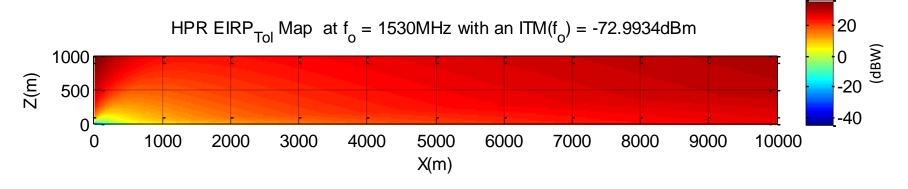
270 m for EIRP of 10 dBW

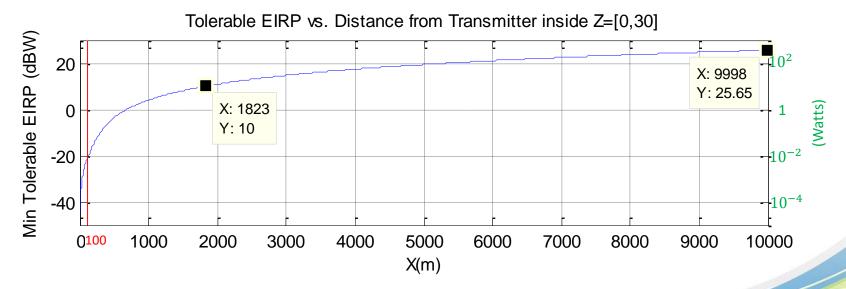




Inverse Modeling: GLN, 1530 MHz

• Extent of the impact region: 4 to 4.5 km from Transmitter for EIRP of 29 dBW


600 to 650 m for EIRP of 10 dBW



Inverse Modeling: HPR, 1530 MHz

Extent of the impact region: >10 km from Transmitter for EIRP of 29 dBW
 1.5 to 2 km for EIRP of 10 dBW

Summary Inverse Modeling – 1530 MHz Results (Single Base Station)

100

10

100

Micro

Urban

Deployment	Stand off	Max Tolerable EIRP (dBW)			
	distance (m)	GLN	HPR	TIM	CEL
Macro Urban	10	-31.0	-41.9	-20.6	10.9
	100	-11.0	-21.9	-0.6	31
Micro Urban	10	-29.8	-41.2	-20.1	10.7
	100	-9.8	-21.1	-0.1	30.8
Deployment	Stand off	Max Tolerable EIRP			
	distance (m)	GLN	HPR	TIM	CEL
Macro Urban	10	0.8 mW	64 μW	8.7 mW	12.3 W
	100	70.1 m	65 mW		1 26 kW

6.5 mW

76 μW

7.8 mW

0.9 W

1 W

9.8 mW

79.4 mW

104 mW

1 mW

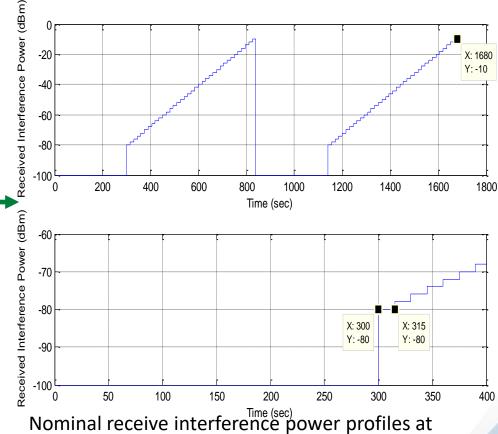
1.26 kW

11.7 W

1.2 kW

Next Steps

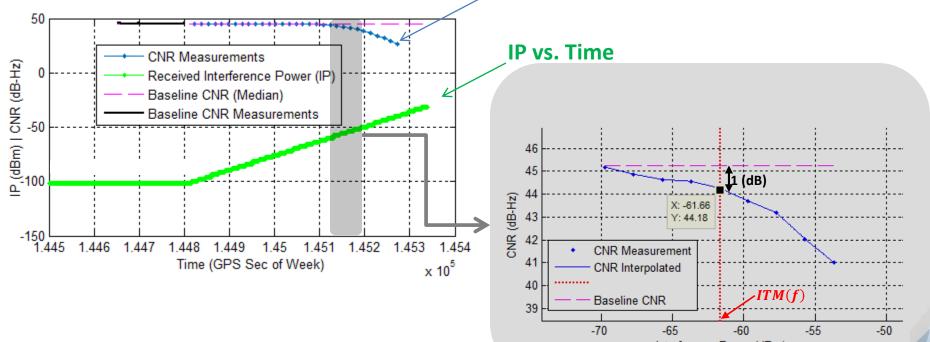
- Finalize Use Case Analysis Based on Feedback from March 30th Workshop
- Complete DOT GPS Adjacent Band Compatibility
 Assessment Final Report

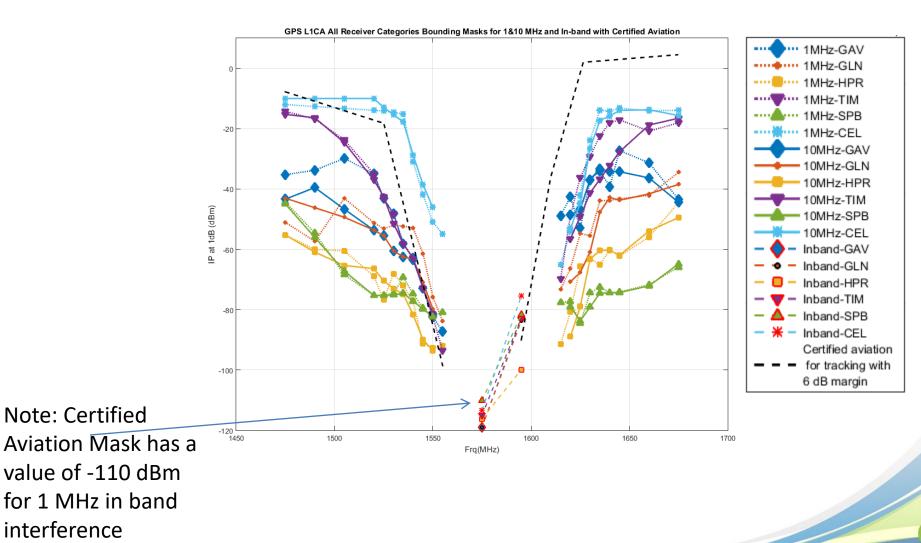

Will include certified avionics and non certified receivers

 Issue Final Report for Public Review and Comment

Backup Slides

Interference Test Signal Frequencies and Power Profiles


Name	Value	Unit
f _{start}	1475	MHz
f _{end}	1675	MHz
$[p_{min_1}, p_{max_1}]$ (1475 to 1540 MHz)	[-80,-10]	dBm
$[p_{min_2}, p_{max_2}]$ (1545 to 1555 MHz)	[-100,-30]	dBm
$\left[p_{min_{3}},p_{max_{3}} ight]$ (1575 and 1595 MHz)	[-130,-60]	dBm
$[p_{min_4},p_{max_4}]$ (1615 to 1625 MHz)	[-100,-30]	dBm
$[p_{min_5}, p_{max_5}]$ (1630 to 1675 MHz)	[-80,-10]	dBm
Δf_1 (1475 to 1520 MHz)	15	MHz
Δf_2 (1520 to 1555 MHz)	5	MHz
Δf_{3} (1575 and 1595 MHz)	N/A	MHz
Δf_4 (1615 to 1645 MHz)	5	MHz
$\Delta {f}_{5}$ (1645 to 1675 MHz)	15	MHz
ΔP	2	dB
Startup Time	15	min
T _{BL}	5	min
T _{step}	15	S
N _{cycle}	2	N/A


GNSS antenna location for the (1475 to 1540 MHz) and (1630 to 1675 MHz) frequency ranges.

Data Processed to Produce a 1 dB Interference Tolerance Mask (ITM)

 Example for determining ITM for 1 frequency (1545 MHz) for PRN 31 for one of the Devices Under Test (DUT)
 CNR vs. Time

Summary of 1&10 MHz and In-band with Certified Aviation Bounding Masks GPS L1 C/A

9

Wired Test Overview

- Test objectives:
 - Receiver/antenna comparison with chamber results
 - OOBE interference at prescribed and proposed levels w/LTE uplink and downlink signals
 - GNSS signal re-acquisition characterizations
- Tests executed week of 25 July with 14 GNSS receivers
 - Representative set of equipment from chamber testing from each receiver category (except space)
 - Receivers tested were USG provided
- Same test instrumentation for wired as with radiated tests
 - GNSS playback (MITRE)
 - Interference system with modifications to support OOBE and re-acquisition test requirements

Antenna Characterization Overview

- Such characterization is needed to:
 - Compare radiated and conducted (wired) test results
 - Apply interference tolerance masks (ITMs) to use cases where adjacent band transmitters are seen by GPS/GNSS receiver antennas at any direction besides zenith (antenna boresight)
- Antennas relative gain patterns were measured for the purpose of linking ITMs to tolerable transmit power for the case of off-bore sight incident interference power:
 - For Right-hand/left-hand circular polarization (RHCP/LHCP), vertical (V), and horizontal (H) polarizations
 - at 22 frequencies: 1475, 1490, 1495, 1505, 1520, 1530, 1535, 1540, 1545, 1550, 1555, 1575, 1595, 1615, 1620, 1625, 1630, 1635, 1640, 1645, 1660, and 1675 MHz