

Crowd-sourced platform for GNSS anomaly identification, isolation and attribution analysis

Mark Dumville / Mike Pattinson Nottingham Scientific Limited

Baska, 8 May 2018

Governments are using GNSS....

Slovakia has experienced the largest extension of road tolling networks worldwide so far.

Slovakian RUC Network RUC network until 31/12/2013 RUC network added from 01/01/2014 Source: Skytol

In addition to Slovakia, Germany, Switzerland and Hungary have successfully implemented GNSS-based tolling. Other countries are also leveraging the benefits:

- Belgium and Russia have launched similar projects implementing GNSS-based schemes.
- France, Finland, Bulgaria, Denmark, The Netherlands and Lithuania have all declared their interest in GNSS-based schemes.

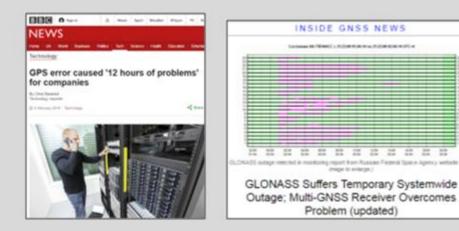
GNSS based Truck tolling

Remotely Piloted Aircraft Systems

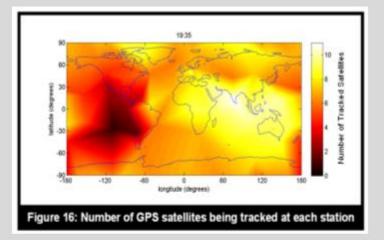
Cal

Offender monitoring

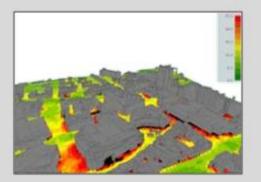
GNSS based road user charging



Fisheries Policy



Governments trust GNSS.....



1. GNSS system issues

2. Solar Flare

3. Masking, obscurations and blockages

4. High ionospheric activity

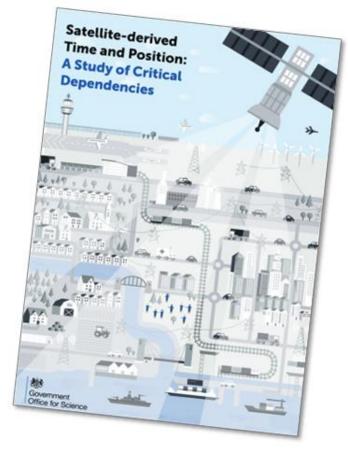
We must defend against threats.....

COLOSSUS

Fines up to 50,000 euros for truckers with GPS jammer to avoid toll

EDEX Truckers who use a GPS jammer to avoid the toll, risking fines up to 50,000 euros. That is infocmed today at Viapasa, the government agency that continuints the kilometer charge. Moreover, there are three ways in which the fraud is detected: via fixed parches above the road, and fixelible control over the mobile control units. In addition, imgularities can be noted in the billing ways Edward Classesens of Viapasa.

www.nsl.eu.com



GNSS performance is critical...

Value at risk from UK loss of GNSS is £5B over 5 days

The purpose of this report is to lay out the breadth, scale and implications of our reliance on GNSS

GNSS performance is monitored...

www.nsl.eu.com

- Use of **Continuously Operating GNSS** networks
- Assessing performance of GNSS for airspace users
- Meeting International Standards (eg, ICAO)
- Accuracy, Integrity, Availability and continuity

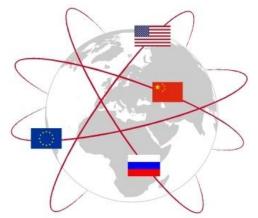
GNSS Interference is monitored...

Detect, characterise, locate GNSS jammers Identify the impact of interferences on GNSS Protect critical GNSS applications and infrastructures Helping to harden next generation GNSS receivers

Crowd-sourced platform for GNSS anomaly identification, isolation and attribution analysis

- Project sponsored by ESA under the NAVISP Programme
 - Navigation Innovation and Support Programme
- Start date: October 2018
- End date: March 2020.

European Space Agency


• COLOSSUS identifies common mode GNSS failures,

- constellation failures, atmospheric events and single satellite failures by persistent monitoring across all GNSS constellations and all GNSS frequencies throughout different geographical scales and receiver network densities.
- COLOSSUS is able to identify inter-GNSS failures and inter-GNSS dependencies within GNSS receivers by processing RINEX data from multiple GNSS receiver types.

COLOSSUS Overview

 COLOSSUS processes crowd-sourced GNSS RINEX data to identify, isolate and attribute GNSS faults and failures into causation groupings.

COLOSSUS Objectives

- 1. To be "scalable" to any size of GNSS network, any volume of GNSS data
- 2. To assemble and maintain a "database" of probabilities of occurrences of GNSS anomalies and the associated impact of faults, failures and events
- 3. To become the "reference" for GNSS performance monitoring, GNSS fault reporting, GNSS investigatory analysis and for the assembly and provision of GNSS incident reports, warnings/alerts and reliability statistics.
- 4. To understand what "trust" to place in GNSS and in doing so support the development of next generation GNSS applications.
- COLOSSUS can also detect GNSS interference...

UN International Committee on GNSS (ICG) 7th IDM Workshop

COLOSSUS was not

designed for GNSS RF

interference detection

Using Crowd-sourced GNSS Data

Quality? Trust? Continuity?

- Continuously Operating Reference Stations (CORS) data
- CORS receivers are typically multi-GNSS, multi-frequency
- Global, regional, national, local CORS networks
- 10,000s of GNSS receivers deployed
- Real-time, offline (and archives)
- Data is accessible (free or small fee)
- Impact of an anomaly on the GNSS receiver is observed

www.nsl.eu.com

Crowd-sourced GNSS interference

Ref: STRIKE	D4.1: Draft standards for threat monitoring and reportin 3_D41_RepStandards Issue: 1.1_public D	9 ate: 20.03.17
	ANDARDISATION OF GNSS THR TING AND RECEIVER TESTING TH RNATIONAL KNOWLEDGE EXCH PERIMENTATION AND EXPLOITAT STRIKE3	IROUGH NNGE, ION
D4.	1: DRAFT STANDARDS FOR THR MONITORING AND REPORTING	EAT
Prepared by:	M Pattinson (NSL), D Fryganiotis (NSL), P Ellardsson (FOI)	
Checked by:	M Dumville (NSL)	20/03/17
Authorised by:	M Dumville (NSL)	20/03/17
	Document Classification: Public	20/03/17 Pages: 25
NS	SNSS LABS ETRI	

Available from: www.gnss-strike3.eu

UN International Committee on GNSS (ICG) 7th IDM Workshop

- 1. A draft standard for Threat Monitoring and Reporting exists
- 2. Developed under STRIKE3 project

COL

<u>ssus</u>

- Provides recommendations for data fields to be provided from GNSS receivers to support GNSS RF interference reporting.
- 4. Applicable to all types of GNSS receiver which enables them to be used in "crowd-sourcing" applications

COLOSSUS **Crowd-sourced GNSS Interference**

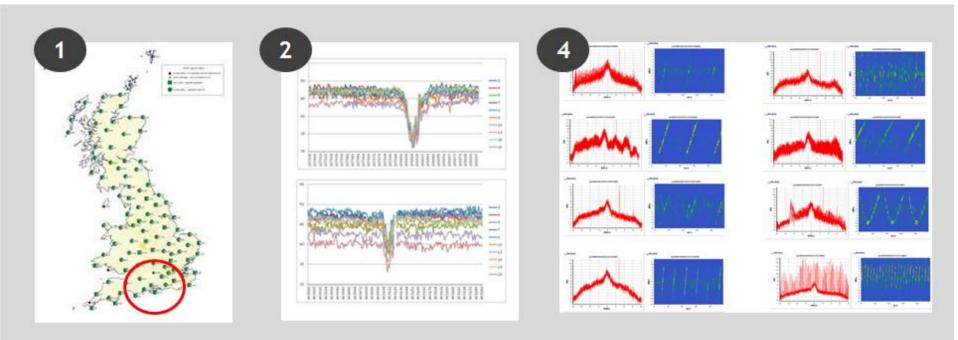
- Crowd-sourced GNSS (RINEX) data over region-of-interest 1.
- 2. Batch processing (multi-GNSS, multi-frequency GNSS data)
- Identification of poor/lost data 3.
- Compare against internal rules/thresholds 4.
- 5. Generate indicators of "interference"

UN International Committee on GNSS (ICG) 7th IDM Workshop

No guarantee that

interference is being

detected


Proof of concept validation

3

Crowd-sourced GNSS

can identify hotspots

- CORS network reports problems at select sites
- Processing CORS RINEX identifies poor/lost data
- Deploy GNSS interference detection system at sites
- Detects and Characterises multiple jammers

Limitations of Crowd-sourced GNSS Data

- Continuously Operating Reference Stations (CORS) sites are chosen for good GNSS signal reception
 - Clear view of the sky
 - No Obstructions
 - No industrial machinery

- Professional grade GNSS receiver and antenna
 - Not typical of user receiver
 - Receivers are implementing "interference cancellation"

No characterisation possible

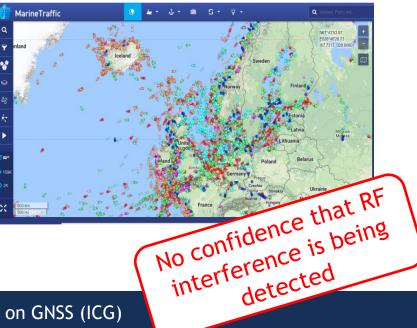
www.nsl.eu.com

Difficult to distinguish interference and jammer

Crowd-sourcing additional GNSS data?

- Observables, SNR
- AGC values(*)
- Multi-constellation GNSS
- Multi-frequency* (L1/L5/E1/E5a)

Observables, SNR, Interference indicators



- AIS & ADS-B position reports
 - identify "jumps" and "gaps" in data
 - Identify reporting "holes"

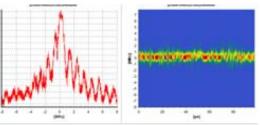
UN International Committee on GNSS (ICG) 7th IDM Workshop

CIORCUD

COLSSSUS

01:10

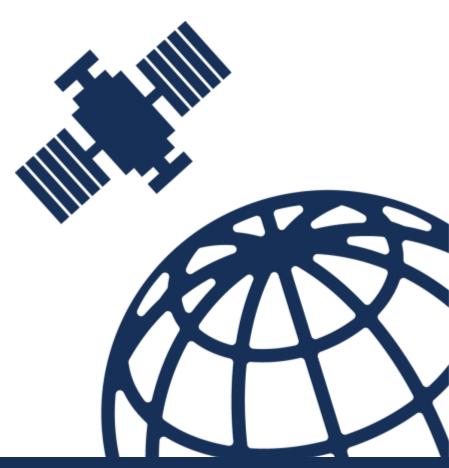
www.flamingognss.com


Preliminary Conclusions

- Crowd-Sourcing benefits from DETECTOR equipment
 - Use of DETECTOR equipment to identify CORS site is clean prior to installation
 - Use of DETECTOR equipment to calibrate/validate crowd-sourcing detection algorithms (ie, trigger thresholds)
 - Use of DETECTOR equipment to diagnose detected events

DETECTOR benefits from Crowd-sourcing techniques

- Use of Crowd-sourcing to identify interference "hotspots"
 - To support incident resolution and removal of interference
- Use of Crowd sourcing to assess impact of known event
 - High power events, New waveforms, Exotic waveforms



thank you

Mark.Dumville@nsl.eu.com Michael.pattinson@nsl.eu.com

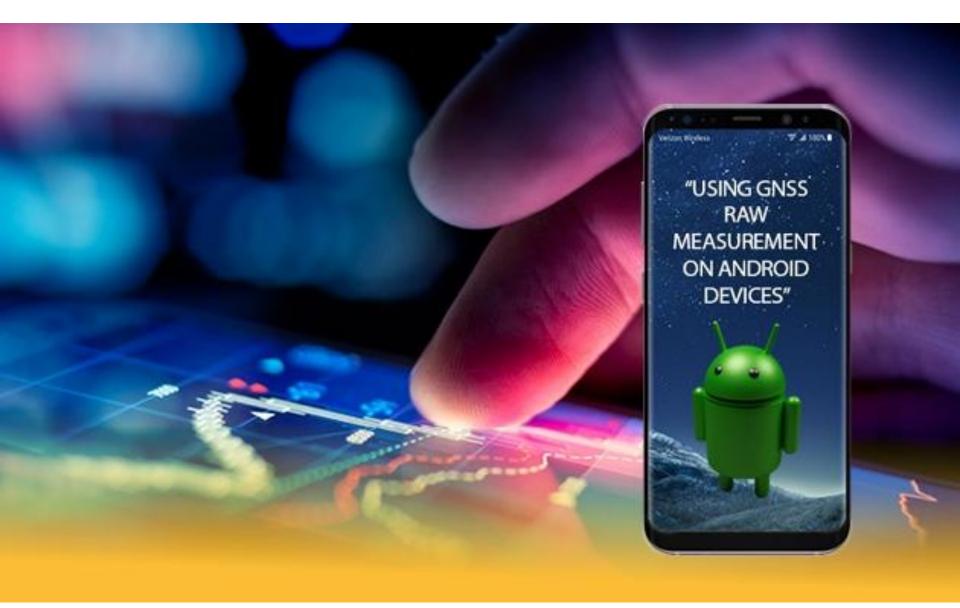
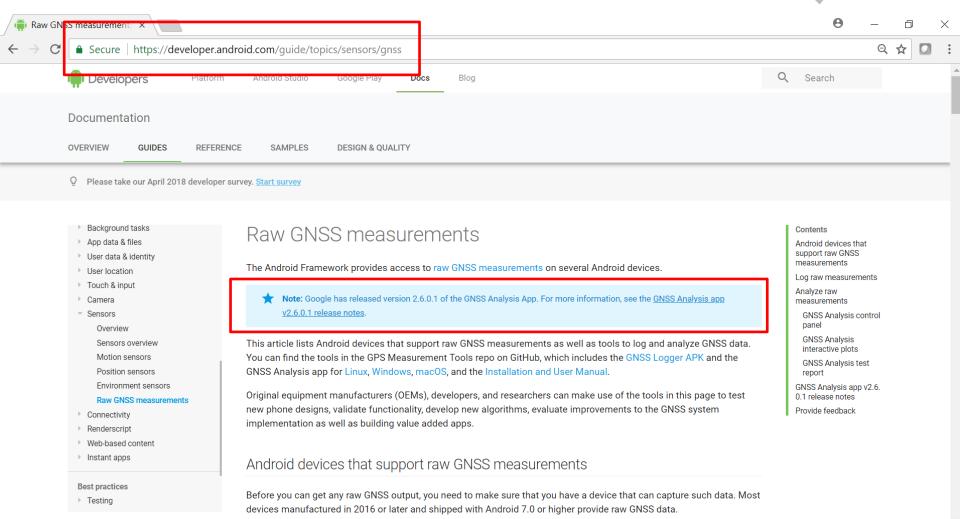



Image courtesy of GSA

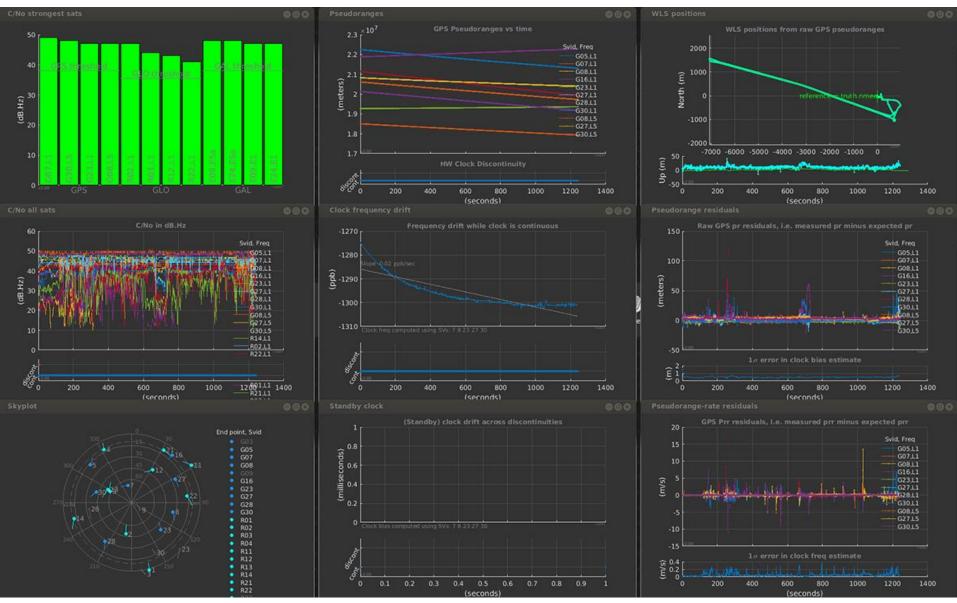

Please see GOOGLEs website

Image courtesy of Google

Image courtesy of GPS World

	eloper.andro	id.com/guide/topic	s/sensors/gn	SS					Q ☆
📫 Developers	Platform	Android Studio	Google Play	Docs Blog					Q Search
OVERVIEW GUIDES	REFERENCE	SAMPLES	DESIGN & QUA	LITY					
 Background tasks App data & files User data & identity 		Model	Android version	Automatic Gain Control	Navigation messages	Accumulated delta range	HW clock	Global systems	Contents Android devices that support raw GNSS measurements
 User location Touch & input 		HTC U11 Plus	8.0	no	no	no	yes	GPS GLONASS	Log raw measurements Analyze raw
 Camera Sensors Overview 		HTC U11 Life	8.0	no	no	no	yes	GPS GLONASS	measurements GNSS Analysis control panel
Sensors overview Motion sensors		Huawei Mate 10	8.0	no	yes	yes	yes	GPS GLONASS	GNSS Analysis interactive plots
Position sensors Environment sensors Raw GNSS measurement	s	Huawei Mate 10 Pro	8.0	no	yes	yes	yes	GPS GLONASS QZSS	GNSS Analysis test report GNSS Analysis app v2.6. 0.1 release notes
 Connectivity Renderscript Web-based content Instant apps 		Google Pixel 2 XL	8.0	yes	no	no	yes	GPS GLONASS GALILEO BeiDou QZSS	Provide feedback
Best practices Testing Performance Accessibility Security		Google Pixel 2	8.0	yes	no	no	yes	GPS GLONASS GALILEO BeiDou QZSS	
 Build for Billions Build for Enterprise Google Play 		Sony Xperia XZ1	8.0	no	no	no	yes	GPS GLONASS GALILEO	

Image courtesy of Google

GNSS Raw Measurements Task Force

GNSS Raw Measurements ×	Θ	_	٥	×
← → C Secure https://www.gsa.europa.eu/gnss-raw-measurements-task-force			☆ [7 :

GNSS Raw Measurements Task Force

Image courtesy of GSA

Members of the SO GNSS Raw Measurements Task Force spac 69 xe ROKUBUN IFSTTAR **Deloitte** ThalesAlenia SE Space a Thales / Leonardo company GENEGIS European University of **G**lobal Navigation Satellite Systems SpaceKinetics Zagreb ECOLE NATIONALE DE L'AVIATION CIVILE CENTRE NATIONAL D'ÉTUDES SPATIALES JRC esa AIRBUS ТС EUROPEAN COMMISSION **European Space Agency** The University of **BEUTH HOCHSCHULE** Nottingham FÜR TECHNIK VSL SPIRENT BERLIN UNITED KINGDOM · CHINA · MALAYSIA University of Applied Sciences Sveučilište u Rijeci ESSP UNITED NATIONS University of Rijeka ≫ waysure Office for Outer Space Affairs Geo++® sogei Sapienza LEUCILISTE UVEARS= Università di Roma HRVATSKO ZAGORJE KRAPINA Image courtesy of GSA

The GNSS Raw Measurements Task Force has published a White Paper on

"Using GNSS Raw Measurements on Android devices"

The Paper provides application developers with a broader insight into the topic, including testing results using various positioning techniques, practical tips, and an outloo on its use.

The White Paper is available for download:

www.gsa.europa.eu/gnss-raw-measurements-task-force

Image courtesy of GSA

GNSS Raw Measurements Taskforce Workshop "GNSS Raw Measurements: from research to commercial use"

GSA Headquarters, Prague, 30 May 2018

	Draft Agenda	13:00 - 14:00	Lunch
09:00 - 9:30	Welcome coffee	14:00 - 15:15	Android GNSS Raw Measurements for testing/optimisation applications
09:30 - 9:40	Welcome by the GSA management		
09:50 - 10:00	Galileo and GNSS Raw Measurements Task Force introduction GSA MKD		Moises Navarro-Gallardo, Airbus, Title TBC
10:00 - 10:30	Google's vision on advanced location services Frank van Diggelen, Google		Paolo Crosta, European Space Agency, Title TBC
10:30 - 11:30	Android GNSS Raw Measurements for high accuracy applications		Ajay Vemuru, Spirent, Title TBC
	Quicksurv: smartphone-aided accurate and affordable surveying. Miquel Garcia-Fernandez, Rokubun		Miguel Ortiz, IFSTTAR, Title TBC
	Performance analysis of GPS+Galileo smartphone raw measurements, Augusto Mazzoni, University of Rome "La Sapienza"		Raw GNSS data under Android 7 or later: Observable quality and positioning performances
	Joshua Critchley-Marrows, NSL, Title TBC		René Warnant, University of Liege
	Accepting proposals	15:15 - 16:00	Future outlook for geolocation in mass market including Galileo contribution
12:15 - 13:00	Android GNSS Raw Measurements for robustness/crowdsourcing applications		Vision on how dual frequency will change the performance levels in mass market Miguel Torroja, Broadcom
	Name TBC, NSL, Title TBC		Galileo Differentiators for mass market
	Lukasz Bonenberg, University of Nottingham, Title TBC		Name TBC, GSA
	Initiative for collection of crowdsourced GNSS Android data for GNSS positioning performance studies		Research and development opportunities Name TBC, GSA
	Renato Filjar and Nenad Sikirica, University of Rijeka	16:00 - 16:30	Q&A and Final remarks

Image courtesy of GSA

www.nsl.eu.com

FLAMINGO

Fulfilling enhanced location accuracy

Looking forward to seeing you on 30 May 2018.

