

Impact of Multi-MEO GNSS on Consumer Products

Greg Turetzky Distinguished Engineer and Director of Marketing, New Product Technology and IP

ICG3 Meeting, Pasadena December, 2008

Consumers and Location

Last year 1.7 Billion people traveled abroad (world wide) for work or pleasure.

The average American drives 12,000 miles a year; only 3,600 are to work and back

In Japan and Korea, 38 million people subscribe to mobile TV.

In the US 75 million people jog, walk, or run on a regular basis

SiRF is a leading provider of location technology solutions for all of them

	in the second		
Navigation & Videos that fit in a small PND	High Sensitivity GPS that tracks through the open and in the forest	Eco-systems that bring the latest application to market quickly	Location indexing that helps you find your photos years later

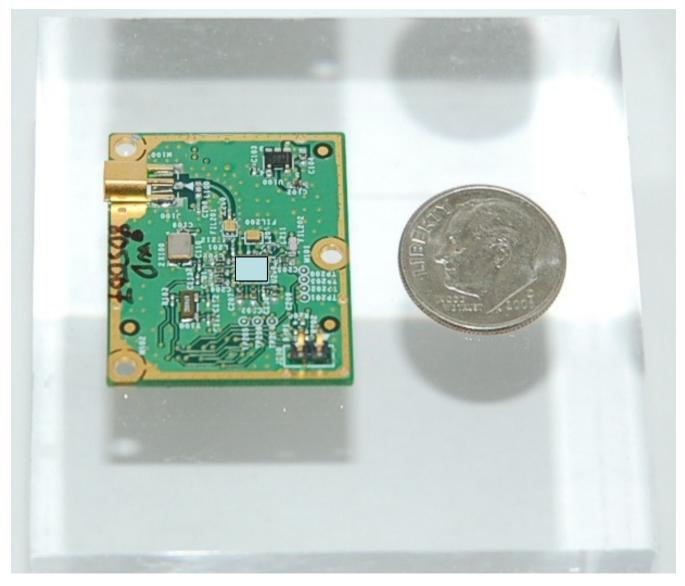
(2)

In over 75M Devices...

3

Who is SiRF?

- SiRF was founded in 1995 with a vision to bring GPS to mainstream consumers
 - Market was still focused on professional applications at product and module level
 - Breakthrough performance in sensitivity and time to first fix with a REDUCTION in power and price
- Our products fueled the growth of key consumer markets for car navigation, PC accessories and cell phones
 - Today we are a market leader and our chips can be found in leading PND and cell phone products around the world
- We were the first company to ship > 1M GPS chipsets in a single month
- We have always been a strong GNSS supporter
 - The SiRFstarII chipset was the first to support WAAS and EGNOS for consumer products in 1998
 - Our current SiRFPrima chip has hardware that can support GPS, WAAS, EGNOS, QZSS, GAGAN, COMPASS and Galileo
 - Not all software has been implemented


(4)

Key specifications for Consumers

	SiRFstarl	SiRFstarIII
year introduced	1997	2008
BB Technology	350nm CMOS	90nm CMOS
CPU/Memory	3 chips external	Internal
RF Technology	BiCMOS	Internal
Power (1Hz fix)	< 1W	<50mW
Total BOM	< \$100	< \$15
Chipset portion	>50%	<40%
Total Footprint	< 7500 mm2	< 20 mm2
Sensitivity	-142 dBm	-159 dBm
TTFF (hot)	12 seconds	<1 second

Current SSIII chip on an evaluation board

Key Consumer Wants

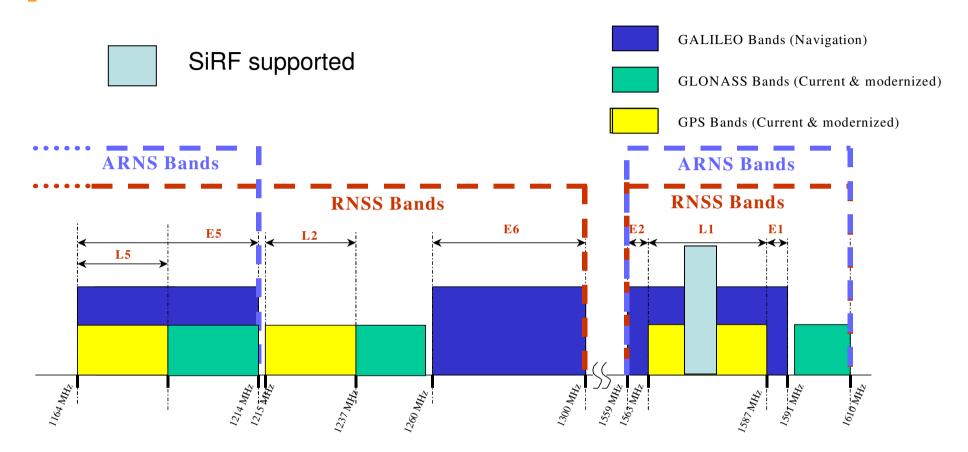
- All devices that need location are portable
 - Most portable devices are now connected
 - Data from satellites is slow and poor link margins
 - Primary use case by 2010 is ephemeris from other sources
- All portable devices have the same concernss
 - Size : must fit in the palm of your hand
 - Power: batteries should last a few days
 - Cost : cheaper things sell faster at WalMart
- Unfortunately, navigation performance is not the highest priority
 - Good enough to meet the bar
 - GPS itself is so much better today than 10 years ago
 - Accuracy of a few meters
 - TTFF of a few seconds
- All however is not lost
 - WE STILL DO NOT HAVE 100% AVALABILITY

 $\overline{7}$

GNSS impact on availability

- Problem #1: Outdoors the urban canyon
 - More satellites is always better
 - More satellites at high elevation is even better
 - SBAS GEOs are ideal for this situation
 - QZSS and iGEO (COMPASS) are even better
 - More MEOs help, but there is a limit
- Problem #2: Indoors the shopping mall
 - More satellites is always better
 - Distribution is less important
 - More power is what is really needed
 - Local infrastructure solutions are the competition
 - Cellular and WiFi positioning

(8)

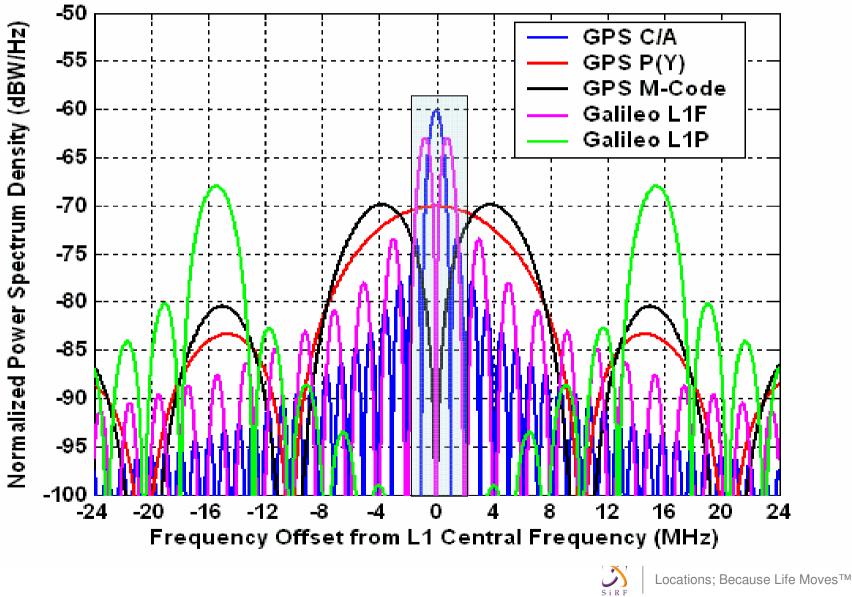

Use cases for consumers

- Two distinct markets have different characteristics.
- Automotive Navigation, Telematics and PND systems
 - Key product features: screen size, maps, voice support
 - Secondary focus is on turn by turn navigation performance
 - Product specs don't usually include GNSS specs at ALL
- Cellular and other wireless devices
 - GPS penetration is still relatively low (<25%)
 - Coexistence with other radios is paramount
 - Cost, size and power dictate penetration
 - Location performance under aided (AGPS) conditions is focused on availability
- Neither market considers multi-MEO GNSS a "must have"
 - GPS is good enough
 - However, GNSS support is a differentiator especially locally

(9)

GNSS Spectrum chart circa 2006

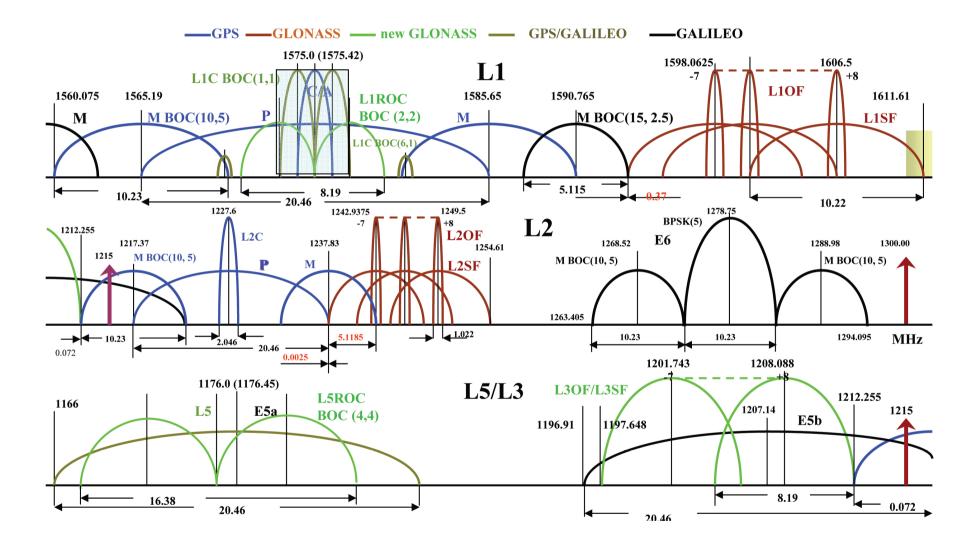
- SiRF used this chart to support our single frequency preference for L1
- Potential future support for 3 systems at L5


Since then GPS improved significantly

- Satellite constellation now at 31 active vehicles
 - Improvement in TTFF and availability across the board
 - Next ground segment upgrade to support 64 SVs
- Significant navigation improvements
 - 95% Spec is 13m, actual performance is 3-4m
- Satellite upgrades underway
 - Block IIR-M vehicles on orbit and verified
 - First block IIF ready to go up
 - Begin L5 capability to assess market potential
 - Block III contract awarded
 - Sustainment of constellation and L1C interoprability
- Market perception of GPS is rock solid and continuing to improve with no impact on cost!
 - The bar has been set very high

(11)

GPS & Galileo at L1


Galileo – Impact to customer design

- Major change in L1 signal structure for Baseband
 - Code is BOC(1,1) with \sim 4000 length memory code
 - Impact is extra gates for decimator and codes
 - Different message structure means new software for acquisition, tracking loops and navigation
- Acceptable cost/performance tradeoffs at modern (65nm) geometries
 - Licensing fees would be main open issue
- RF impact on bandwidth potentially more problematic
 - SiRF supports both 6 and 2 MHz bandwidth
 - Many customers prefer 2MHz for improved performance in unintentional interference from other internal sources
 - Transmitters, clocks, memory buses, display drivers, etc.
 - Wider bandwidth (6MHz) needed for full performance
- ICD process needs to be more transparent
 - Long time between revisions and little visibility as to which sections are under review

(13)

GLONASS makes 3 systems

 $\sum_{\text{S i R F}}^{*}$ | Location


(14)

GLONASS on the rise

- Constellation "replenishment" moving to schedule
 - New revision satellites (Glonass-M) have much better performance and on-oribt life than previous ones
- GLONASS gaining market traction
 - Some customers requesting for it, starting to appear in standards
 - Internal Russian market growing
- Significant silicon integration issues on current signals
 - Wide bandwidth and different center frequency at L1
 - Requires two front end paths
 - RF silicon is not as area efficient as digital
 - FDMA methodology and new tracking loops needed
- Longer term future is more code compatible
 - Next generation (Glonass-K) will have CDMA at L1 & L5
 - Similar issues to Galileo baseband
 - Really need ICDs to understand hardware impact
- Main concern is RF due to signal bandwidth
 - 8MHz at L1 is problematic
 - 20MHz at L5 would require major redesign

(15)

COMPASS Frequency Design Plan

COMPASS Integration

- Chinese COMPASS system is evolving in a positive way
 - Proposed MEO constellation is complimentary
 - Combination of Geo and iGEO for regional augmentation is also positive
 - Initial testing on signals shows positive results
- Code compatibility is good
 - Limited impact on digital design
 - Software modifications for message structure
 - Need to understand ICD release timeframe
- RF impact is uncertain
 - Bandwidth is relatively narrow but not centered
 - Compatible but not very interoperable
 - Potential impact on filter design as well

Overall Result

- There is a definite benefit from multi-MEO constellation integration
 - Not dramatic, but sufficient to pursue
 - Impact to digital and software is a good cost/benefit ratio
 - future-proofing receivers requires ICDs years in advance
 - Investigate impact to cross-correlation and noise floor from multiple systems in same band
- Biggest impact is RF bandwidth/center frequency
 - Vast majority of fielded systems today are narrow band
 - Bandwidth directly impacts cost and size
 - 2MHz->6MHz creates potential jamming problems
 - 8-12 MHz starts to impact external filters
 - > 12 MHz leads to multiple RF paths
 - >50 MHz leads to multiple antennas
 - This is the key to moving from compatibility to interoperability to interchangeability
- Our goal is to increase availability while minimizing impact
 - Small benefit can justify small impact
 - Competition is not just other satellite systems
 - Its ground based infrastructure and MEMS sensors

Recommendations to providers

- Additional systems have to integrate easily
 - Maintain narrow bandwidth option for maximum consumer penetration
 - ICDs should be out 3-5 years ahead of deployment
 - Met by L5, L1C, QZSS, Galileo OS
- Use business models that are successful in the consumer market
 - GPS is a good example
 - License free operation
 - Early and open publication of ICDs
 - Establishment of user forums for ICD changes
 - Allows all users to comment on other users requests
 - Wireless standards groups
 - IEEE 802.11, BT
 - Provides proven structure for standards, ICDs and interactions between Infrastructure and user equipment providers
- Involve everyone, maintain independent decision making authority

