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1. Basic of Orbital Mechanics
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This chapter will take you comprehensively through the basics of orbital mechanics, 
beginning with the fundamentals.

If you understand the contents of this chapter, you have mastered the minimum of 
orbital mechanics.



KiboCUBE Academy 5

History of orbital mechanics

• Tycho Brahe (1546 – 1601)

✓Made detailed and voluminous observations of planetary movements
in an age when telescopes did not yet exist.

• Johannes Kepler (1571 – 1603)

✓Attempted to provide theoretical support for the Tycho’s observation as an assistant.

✓As a result, a mathematical representation of the observations was
successfully obtained:

✓The position and motion of planets could be obtained very accurately by calculation.

✓A force inversely proportional to the square of the distance was shown.

✓Dr. Carl Sagan called him "the first physical astronomer and the last scientific astrologer."

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Phenomenon Law

induction

https://en.wikipedia.org/wiki/Tycho_Brahe

https://en.wikipedia.org/wiki/Johannes_Kepler

https://en.wikipedia.org/wiki/Tycho_Brahe
https://en.wikipedia.org/wiki/Johannes_Kepler
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Kepler’s Laws

1. The orbit of a planet is an ellipse with the Sun at one 
of the two foci.
-> This is a description of the "shape" of a planet's orbit.

2. A line segment joining a planet and the Sun sweeps 
out equal areas during equal intervals of time.
-> This describes the motion "within a single orbit."

3. The square of a planet's orbital period is proportional 
to the cube of the length of the semimajor axis of its 
orbit.
-> This clarifies the relationship "between the different 
orbits."

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Orbit period,

time required per revolution, 

Sun

on focus

imaginary focus

F F’

O

Another orbit
with the same focus

Sahara Lab., TMU
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History of orbital mechanics (cont.)

• Galileo Galilei (Julian calendar’s 1546 – Gregorian calendar’s 1601)

✓Is considered the "father of modern science" and "the father of astronomy.“

✓Of Kepler's law he said:
"All celestial bodies move in perfect circles. There is no such thing as elliptical motion.“
It reflects the perceptions and public attitudes of the time that even those who refused 
to blindly follow the authority of the Church were unable to escape.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

• Because of the problem of misalignment with the Julian calendar, the calendar was shifted to the Gregorian 
calendar with improved leap year rules.
• Julian calendar : 1 year = 365.25 days
• Gregorian calendar : 1 year = 365.2425 days

• Promulgated in 1582, the day after October 4 of the same year was designated as October 15.
• NOTE: Julian day (JD) is the number of days from noon (Universal Time) on November 24, 4713 B.C., and is 

used in astronomy and other fields. In spacecraft operations, J2000.0 (or J2000) is often used.
• In reality, one year = 365.2422 days. If we continue to use the Gregorian calendar, there will be a discrepancy 

of 0.0003 days per year, or 1 day in 3333 years.

https://en.wikipedia.org/wiki/Galileo_Galilei

https://en.wikipedia.org/wiki/Galileo_Galilei
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History of orbital mechanics (cont.)

• Isaac Newton (1643 – 1727)

✓His achievements, such as the establishment of Newtonian mechanics, the discovery of 
differential and integral calculus, are nothing short of great.

✓Hypotheses non fingo (Latin for "I frame no hypotheses" or "I contrive no hypotheses")

✓He introduced the concept of universal gravitation and applied the laws of motion to 
successfully describe the motion of the planets.
It is based on a new style that is not interested in what or why, but accepts it as such.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Phenomenon Law

deduction

Line of action Newton's law of universal gravitation

1. Every point mass attracts every single other point mass
by a force acting along the line intersecting both points.

2. The force is inversely proportional to the square of the
distance between them.

3. The force is proportional to the product of the two
masses.

⟹ 𝐹 = 𝐺
𝑚1𝑚2

𝑟2

Newton's laws of motion

1. A body remains at rest, or in motion at a constant
speed in a straight line, unless acted upon by a force.

2. When a body is acted upon by a force, the time rate
of change of its momentum equals the force.

3. If two bodies exert forces on each other, these forces
have the same magnitude but opposite directions.

https://en.wikipedia.org/wiki/Isaac_Newton

https://en.wikipedia.org/wiki/Isaac_Newton
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Integrate the concept of universal gravitation and the laws of motion

 Assume that

✓a two-body problem with a central celestial body and a spacecraft only.

✓the mass of the central body is much larger than the mass of the spacecraft.

 Then, the universal gravitation is a central force field with the following properties:

✓The direction of the force always points toward the central body.

✓The magnitude of the force depends only on the distance to the center of the force.

From the universal gravitation

𝐅 = −
𝐺𝑚𝑀

𝑟2
∙
𝐫

𝑟
and the equation of motion

𝐅 = 𝑚𝐚 = 𝑚 ሷ𝐫

we obtain the equation of the starting point for orbital mechanics

ሷ𝐫 +
𝜇

𝑟3
𝐫 = 𝟎

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Central body

Spacecraft

By the way, if there is no change, a planet (spacecraft)
seems to continue on the same stable orbit...

There must be some conserved quantity!
Finding conserved quantities is a powerful
way to explore the physical phenomena.
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Integrate the concept of universal gravitation and the laws of motion (cont.)

Apply the scalar product of ሶ𝐫 to both sides of the above equation.

ሶ𝐫 ∙ ሷ𝐫 + ሶ𝐫 ∙
𝜇

𝑟3
𝐫 = 0

And we found that the above equation expresses the balance with respect to energy.

Applying the following relation

ሶ𝐫 ∙ ሷ𝐫 =
1

2

d

d𝑡
ሶ𝐫 ∙ ሶ𝐫 =

d

d𝑡

𝑣2

2
and 𝐫 ∙ ሶ𝐫 =

1

2

d

d𝑡
𝐫 ∙ 𝐫 =

d

d𝑡

𝑟2

2

Then,
d

d𝑡

𝑣2

2
+
𝜇

𝑟3
d

d𝑡

𝑟2

2
=

d

d𝑡

𝑣2

2
−
𝜇

𝑟
= 0

When integrated, the result is
𝑣2

2
−
𝜇

𝑟
= 𝐸

𝐸 is the integration constant, which is obviously the sum of the kinetic energy and the potential 
energy per unit mass of the universal gravitation force. 

In other words, a specific dynamic energy conservation law was derived.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

direction in central force field

,
component of in direction 

Scalar
[Velocity] x [Force per unit mass in radial
direction]v= m/s x N = N-m/s = J/s = W

Dynamic energy is conserved 
in orbital motion
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Integrate the concept of universal gravitation and the laws of motion (cont.)

Apply the vector product of 𝐫 from the left to both sides of the aforementioned equation.

𝐫 × ሷ𝐫 + 𝐫 ×
𝜇

𝑟3
𝐫 = 𝟎

The above equation expresses the balance with respect to moments.

Applying the following relation

𝐫 × 𝐫 = 𝟎 and 
d

d𝑡
𝐫 × ሶ𝐫 = ሶ𝐫 × ሶ𝐫 + 𝐫 × ሷ𝐫 = 𝐫 × ሷ𝐫

Then,
d

d𝑡
𝐫 × ሶ𝐫 = 𝟎

When integrated, the result is
𝐫 × ሶ𝐫 = 𝐫 × 𝐯 = 𝐡

𝐡 is obviously a constant angular momentum vector, and 𝐫 and 𝐯 always remain in one plane.

That is, the orbit is limited to one plane in space (Kepler's zeroth law).

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Vector
[Distance] x [Force per unit mass in circumferential direction]
= m x N = N-m

,

component of A perpendicular to direction B

coincides with the direction,

but is generally illustrated.

O

= 𝟎

Angular momentum is conserved 
in orbital motion.
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Example

In the inertial coordinate system, the position and velocity vectors are given as

𝐫 = 4.19𝐢 + 6.28𝐣 + 10.46𝐤 × 106 [m]

𝐯 = 2.59𝐢 + 5.19𝐣 × 103 [m/s]

Find the specific dynamic energy 𝐸, the specific angular momentum ℎ, and the flight path angle 𝜙. 
The gravitational constant is 𝜇 = 3.986 × 105 [km3/s2].

Answer

𝑟 = 4.192 + 6.282 + 10.462 × 106 = 1.29 × 107 [m],    𝑣 = 2.592 + 5.192 × 103 = 5.80 × 103 [m/s]

∴ 𝐸 =
𝑣2

2
−

𝜇

𝑟
= −1.41 × 107 [m2/s2]

𝐡 = 𝐫 × 𝐯 =
𝐢 𝐣 𝐤

4.19 × 106 6.28 × 106 10.46 × 106

2.59 × 103 5.19 × 103 0

∴ ℎ = 5.432 + 2.712 + 0.5482 × 1010 = 6.09 × 1010 [m2/s]

∴ 𝜙 = cos−1
ℎ

𝑟𝑣
= 35.5° ∵ 𝐫 ∙ 𝐯 > 0, ℎ > 0 ⟹ 0° ≤ 𝜙 ≤ 90°

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

: Zenith angle 
: Flight-path angle

O
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Consider what shape the path in the orbit plane will take.

ሷ𝐫 +
𝜇

𝑟3
𝐫 = 𝟎

Apply the vector product of the specific angular momentum vector 𝐡 to the above equation.

ሷ𝐫 × 𝐡 +
𝜇

𝑟3
𝐫 × 𝐡 = 𝟎

where
d

d𝑡
ሶ𝐫 × 𝐡 = ሷ𝐫 × 𝐡 + ሶ𝐫 ×

d𝐡

d𝑡
= ሷ𝐫 × 𝐡

𝜇

𝑟3
𝐫 × 𝐡 =

𝜇

𝑟3
𝐫 × 𝐫 × 𝐯 =

𝜇

𝑟3
𝐫 × 𝐫 × ሶ𝐫 =

𝜇

𝑟3
𝐫 ∙ ሶ𝐫 𝐫 − 𝐫 ∙ 𝐫 ሶ𝐫 =

𝜇 ሶ𝑟

𝑟2
𝐫 −

𝜇

𝑟
ሶ𝐫 =

d

d𝑡
−𝜇

𝐫

𝑟

From the above,    
d

d𝑡
ሶ𝐫 × 𝐡 − 𝜇

𝐫

𝑟
= 𝟎

Integrating this, we obtain    ሶ𝐫 × 𝐡 − 𝜇
𝐫

𝑟
= 𝐤

The following can be found for 𝐤, called the Laplace vector.

 𝐤 is in the orbital plane because 𝐡 ∙ 𝐤 = 0.

 𝐤 is a constant value vector because 𝐤 is an integral constant.

 𝐤 always indicates the direction of perigee from the central object for any 𝐫. Think at periapsis.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

= 𝟎

Triple products of vectors
𝐚 × 𝐛 × 𝐜 = 𝐚 ∙ 𝐜 𝐛 − 𝐚 ∙ 𝐛 𝐜

𝐫 ∙ ሶ𝐫 =
1

2

d

d𝑡
𝐫 ∙ 𝐫 =

1

2

d

d𝑡
𝑟2 = 𝑟 ∙ ሶ𝑟

𝐫 ∙ 𝐫 = 𝑟2

O

The Laplace vector is conserved 
in orbital motion.
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Now that we can make 𝐤 a reference direction, let's look at the shape of the orbit using this.

That is, take the scalar product of 𝐤 and 𝐫.

𝐫 ∙ ሶ𝐫 × 𝐡 − 𝜇
𝐫∙𝐫

𝑟
= 𝐫 ∙ 𝐤 ∴ ℎ2 − 𝜇𝑟 = 𝑟𝑘 cos 𝑓

When rewritten,

𝑟 =
ℎ2

𝜇 + 𝑘 cos 𝑓
=

ℎ2

𝜇

1 +
𝑘
𝜇
cos 𝑓

=
𝑝

1 + 𝑒 cos 𝑓

This represents a quadratic curve (conic curve) expressed in polar coordinates, where 𝑓 is a parameter.

 When 𝑒 = 0, the orbit is circular with 𝐸 < 0, and 𝑟 = 𝑝.

 When 0 < 𝑒 < 1, the orbit is elliptical with 𝐸 < 0, and 𝑣2 < 0 at 𝑟 → ∞. In other words, it is trapped in the central body.

 When 𝑒 = 1, the orbit is parabolic with 𝐸 = 0, and 𝑣 = 0 at 𝑟 → ∞. In other words, it just reaches infinity.

 When 1 < 𝑒, the orbit is hyperbolic with 𝐸 > 0, and 𝑣 > 0 at 𝑟 → ∞. It still tries to move away even after reaching infinity.

It's a moment when the mathematical and physical interpretations align so beautifully!!!

This is Kepler's first law. However, "elliptical orbit" is extended to "conic curve."

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

𝑝 : semi-latus rectum
𝑒 : eccentricity
𝑓 : true anomaly
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For the implicit function curve
𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0

given by the following equation

𝑟 =
𝑝

1 + 𝑒 cos 𝑓

where the radius 𝑟 is marked in polar coordinates with parameter 𝑓.

If a cone is cut in a plane

• that intersects all the generatrix and is parallel to the base, the cross section is a circle.

• that intersects all of the basal lines and is not parallel to the base, the cross section will be an ellipse.

• that is parallel to a generatrix, the cross section will be a parabola.

• that is not parallel to the baseline, the cross section will be a hyperbola.

The conic curves were systematized
by Apollonius of Perga in BC.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Circle

Ellipse
Parabola

Hyperbola

Hyperbolas

Circle

Ellipse

Parabola

Generatrix

https://upload.wikimedia.org/wikipedia/commons
/6/63/Apollonii_Pergei_Opera_1537_detail.jpg

https://upload.wikimedia.org/wikipedia/commons/6/63/Apollonii_Pergei_Opera_1537_detail.jpg
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The ellipse is one example, but the following holds for all conic curves.
In this lecture, 𝑎 < 0 is used for the hyperbola when 1 < 𝑒.

 From geometric relations,

 Periapsis FP ≡ 𝑟𝑝 = 𝑎 1 − 𝑒 =
𝑝

1+𝑒

 Apoapsis FA ≡ 𝑟𝑎 = 𝑎 1 + 𝑒 =
𝑝

1−𝑒

 Semimajor axis 𝑎 =
𝑟𝑎+𝑟𝑝

2
=

𝑝

1−𝑒2

 Semiminor axis 𝑏 = 𝑎 1 − 𝑒2 =
𝑝

1−𝑒2

 From the definition in the derivation process, 𝑝 =
ℎ2

𝜇
, 𝑒 =

𝑘

𝜇

 Since ℎ2 = 𝜇𝑝 = 𝜇𝑎 1 − 𝑒2 , we can write ℎ = 𝑟𝑝𝑣𝑝 = 𝑟𝑎𝑣𝑎 at Periapsis and Apoapsis, then,

𝐸 =
𝑣2

2
−
𝜇

𝑟
=

ℎ2

2𝑟𝑝
2 −

𝜇

𝑟𝑝
=
𝜇𝑝 − 2𝜇𝑟𝑝

2𝑟𝑝
2 =

𝜇𝑎 1 − 𝑒2 − 2𝜇𝑟𝑝

2𝑟𝑝
2 =

𝜇𝑟𝑝 1 + 𝑒 − 2𝜇𝑟𝑝
2𝑟𝑝𝑎 1 − 𝑒

= 𝜇
𝑒 − 1

2𝑎 1 − 𝑒
= −

𝜇

2𝑎

that is, the specific dynamic energy is uniquely determined once the long radius is determined. 
And vice versa.

 Eccentricity can be obtained, for example, as follows: 𝑒 = 1 −
𝑝

𝑎
= 1 +

2𝐸ℎ2

𝜇2
, 𝑒 =

𝑟𝑎−𝑟𝑝

𝑟𝑎+𝑟𝑝

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

O
A P

Q

FF’

P FF’ O

A is at infinity.

PF O, A, and F' are

at infinity.

EccentricitySemi-latus rectum

Once any two of semimajor axis, 
eccentricity, and Semi-latus rectum can be 
obtained, the remaining one can be 
obtained, as well as specific dynamic energy, 
specific angular momentum, etc.
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Velocity is obtained from 𝐸 =
𝑣2

2
−

𝜇

𝑟
= −

𝜇

2𝑎
as 𝑣 = 𝜇

𝟐

𝑟
−

1

𝑎
.

Introducing the concept of flight path angle, we can write as ℎ = 𝑟𝑣 cos𝜙 = 𝑟 ∙ 𝑟 ሶ𝑓 = 𝑟2
d𝑓

d𝑡
⟹ 𝑑𝑡 =

𝑟2

ℎ
𝑑𝑓.

By the way, if the angle of motion on an orbit at time 𝑑𝑡 is 𝑑𝑓,

the area 𝑑𝐴 swept by the radius at this time can be written as 𝑑𝐴 =
1

2
𝑟2𝑑𝑓 from the concept of a small area.

Eliminating 𝑑𝑓 from the above two equations yields 
𝑑𝐴

𝑑𝑡
=

d𝐴

d𝑡
=

ℎ

2
.

This is Kepler’s second law,
and the area velocity is constant at 1/2 of the specific angular momentum.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Regarded as a microtriangle (arc-length = string-length,
right triangle) and area = base x height / 2.
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The area of the ellipse is 𝜋𝑎𝑏.

Since the area velocity of the orbital motion is 
d𝐴

d𝑡
=

ℎ

2
from Kepler’s second law.

Therefore, the orbital period is the time to fill the entire area of the ellipse, which is 𝑇 =
𝜋𝑎𝑏

Τℎ 2
=

2𝜋𝑎𝑏

ℎ
.

Here, since 𝑏 = 𝑎2 1 − 𝑒2 = 𝑎𝑝 and ℎ = 𝜇𝑝,

𝑇 =
2𝜋𝑎𝑏

ℎ
=
2𝜋𝑎 𝑎𝑝

𝜇𝑝
=
2𝜋

𝜇
𝑎 ൗ3 2 ∴ 𝑇2 ∝ 𝑎3

This is Kepler’s third law.

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws
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First cosmic velocity
is the velocity condition for the spacecraft to be placed into a circular orbit of radius 𝑟𝑐.

 Orbit period 𝑇 =
2𝜋

𝜇
𝑎 Τ3 2

For a circular orbit, let 𝑎 = 𝑟𝑐, and 𝑇 =
2𝜋

𝜇
𝑟𝑐
Τ3 2

 Since 𝑣𝑐 = Τ𝜇 𝑟𝑐 is obtained from the law of conservation of energy, the first cosmic velocity is 
𝑣𝑐
2

2
−

𝜇

𝑟𝑐
= −

𝜇

2𝑟𝑐
.

Ignoring air drag, the first cosmic velocity at an altitude of 0 km is 𝑣𝑐 = Τ3.986 × 105 6378 = 7.905 [km/s].

Second cosmic velocity
is the escape velocity from the gravitation sphere from a circular orbit of radius 𝑟𝑐.

 Since 𝐸 =
𝑣𝑒𝑠𝑐
2

2
−

𝜇

𝑟𝑐
= 0 from the law of conservation of energy, 𝑣𝑒𝑠𝑐 =

2𝜇

𝑟𝑐
= 2𝑣𝑐.

Ignoring air drag, the second cosmic velocity at an altitude of 0 km is 𝑣𝑒𝑠𝑐 = 2𝑣𝑐 = 11.20 [km/s].

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws
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Example

A planetary probe is injected into an Earth escape orbit from a parking orbit at an altitude of 200 km.

Find the minimum escape velocity from the parking orbit and the semi-latus rectum.

Answer

The orbit radius of the parking orbit is 𝑟𝑐 = 200 + 6378 = 6578 [km].

Therefore,

𝑣𝑒𝑠𝑐 = 2
𝜇

𝑟𝑐
=

2×3.986×105

6578
= 11.01 [km/s]

and

𝑝 = 𝑟𝑝 1 + 𝑒 = 2𝑟𝑝 = 2 × 6578 = 13156 [km]

1. Basic of Orbital Mechanics
1.1 Kepler’s Laws

Note that since this is the "minimum" escape velocity, the first of the possible 
escape trajectories is a parabolic trajectory.
Also, the injection point is the perigee.
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Define an appropriate inertial coordinate system, the perspective of an observer in inertial motion (stationary or 
constant velocity linear motion), to represent the trajectory in 3-dimensional space.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

Heliocentric ecliptic coordinate
: Equinox Point Direction
: Right-handed system for in the ecliptic plane
: Right-hand system for -

Direction of revolution

Plane of revolution
or Ecliptic plane

Equatorial plane

Axis of rotation

Equator
Winter solstice

Summer solstice

Spring equinox

Autumn equinox

Heliocentric ecliptic coordinates
The earth makes one orbit around the sun in one year.

Sun

Moves to the following 
constellation in about 
2000 years.

Takes about 25,800 
years to complete 
one revolution.

Twelve signs 
of the zodiac

Sahara Lab., TMU
Display on the celestial sphere

The sun makes one revolution of the ecliptic per year.
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(Celestial north pole)

Nadir
(Celestial south pole)

Summer solstice
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0 degrees in ecliptic longitude

Autumn equinox
180 degrees in ecliptic longitude

Earth
Obliquity of the ecliptic

Celestial sphere
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Observations will be made in the 𝑺𝑬𝒁 system.

Convert to the 𝑰𝑱𝑲 system considering topos 𝜆𝑎, 𝜆𝑜,
and the time of the Earth (Θ = 𝜃𝑔 + 𝜆𝑜).

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

In reality, it is not an inertial system due to its orbit and precession, but it can be
regarded as an inertial system as an approximation due to its proximity to the
Earth and short time period.

Greenwich meridian

topos

赤道

:

Ground surface center-horizontal plane inertial coordinate system
Origin: Observation point (topos)

: Facing south from the origin
: Facing east from the origin
: Right-hand system for - (local horizontal plane)

Note that the unit vectors in the , , and directions are written as 
, , and , recpectively, in this lecture.

ECI: Earth-Centered Inertial
: Equinox Point Direction
As is customary, it is taken in the direction of Aries,      .

: Right-handed system for in the equatorial plane
: Right-hand system for -

Note that the unit vectors in the , , and directions are written as ,
, and , respectively, in this lecture.
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Since it is based on the orbital plane of satellite,
it is unaware of the epoch (in the direction of Spring equinox,
for example) or the rotation of the Earth.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

Orbital plane coordinate system
: Periapsis
: Right-handed system for in the orbital plane
: Right-hand system for -

Note that the unit vectors in the , , and directions are written as 
, , and , respectively, in this lecture.

Line of node
Ascending node

Descending node

Perigee

Position at an epoch

:



Line of node
Ascending node

Descending node

Perigee

Position at an epoch

:
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Orbit Elements

 To uniquely determine an orbit in 3-dimensional space, five independent parameters are needed that describe the size, shape, and 3-
dimensional orientations of the orbit.

 One more parameter is needed to indicate its position in the orbit.

The above are collectively referred to as the six orbital elements.

1. Semimajor axis, 𝑎 : semimajor axis of ellipse

2. Eccentricity, 𝑒 : eccentricity of ellipse

3. Inclination, 𝑖 : angle between orbital plane and equatorial plane
𝑖 = 0°: over the equator, 𝑖 = 90°: over the two poles

4. Right ascension of the ascending node (RAAN), Ω
: longitudinal angle of the ascending node in the equatorial plane
from the direction of the spring equinox

5. Argument of perigee, 𝜔
: Angle of geocentricity from ascending node to perigee in the orbit plane

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

Semimajor axis and eccentricity determine the size and shape of the orbit,
and Inclination, RAAN, and argument of perigee are the Eulerian angles of the orbit plane.
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6. Specified by the time, 𝑡0, when the satellite passed its perigee, or the true anomaly, 𝑓0, in an epoch, and so on.

Example

Find the orbit elements of Hitomi, a Japanese X-ray astronomy satellite.
Here, assume that radius of the Earth is 6,378 km in radius.

Answer

The following are obtained from the data on the right. 

Perigee radius, 𝑟𝑝 = 559.85 + 6378 = 6937.85 km,

and apogee radius, 𝑟𝑎 = 581.10 + 6378 = 6959.1 km, then,

 Semimajor axis: 𝑎 =
6959.1+6937.85

2
≃ 6948.5 km

 Eccentricity: 𝑒 =
6959.1−6937.85

6959.1+6937.85
≃ 0.0015

 Inclination: 𝑖 = 31.01 deg.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

https://en.wikipedia.org/wiki/Hitomi_(satellite)

https://en.wikipedia.org/wiki/Hitomi_(satellite)
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Two Line Elements, TLE
In actual satellite operations, it is more common to treat the orbital six elements as TLEs than to look at them directly.
TLE is available from Space-Track.Org (or CELESTRACK), etc.

AAAAAAAAAAAAAAAAAAAAAAAA
1 BBBBBC DDEEEFFF GGHHH.HHHHHHHH +.IIIIIIII +JJJJJ-J +KKKKK-K L MMMMN
2 BBBBB PPP.PPPP QQQ.QQQQ RRRRRRR SSS.SSSS TTT.TTTT UU.UUUUUUUUVVVVVW

Line 1
GG : last two digits of the year of the latest epoch
HHH.HHHHHHHH : the latest epoch (cont.), time in days elapsed since 00:00 UTC on January 1 of the year indicated by GG
L : orbit model used (0: no information, 1: SGP, 2: SGP4, 3: SDP4, 4: SGP8, 5: SDP8)
MMMM : serial number of orbit element (+1 per renewal)

Line 2
PPP.PPPP : inclination (deg.), 𝑖
QQQ.QQQQ : RAAN (deg.), Ω
RRRRRRR : eccentricity (decimal point), 𝑒
SSS.SSSS : argument of perigee (deg.), 𝜔
TTT.TTTT : mean anomaly (deg.)

UU.UUUUUUUU : mean motion (revolution per day), 𝑛 =
2𝜋[rad]

𝑇[day]
=

𝜇

𝑎3
[rad/day] ⟶ 𝑎

Example: XI-IV, one of the world's first CubeSats launched by the University of Tokyo
CUBESAT XI-IV (CO-57)   
1 27848U 03031J   21038.56791106  .00000056  00000-0  45308-4 0  9990
2 27848  98.6882  49.3064 0010811 106.4206 253.8161 14.21866761913357

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

𝑖 Ω 𝑒 𝜔
𝑛 =

𝜇

𝑎3
= 14.21866761913357[rad/day] ⟶ 𝑎 = 7,197[km]

13.37:47.5…, Feb. 7, 2021

HHH.HHHHHHHH has the value of 001.00000000 on Jan. 1 (UTC).
Note that 000.00000000 means UTC00:00 on Dec. 31 in the previous year.

The time elapsed since the perigee passage is expressed as a percentage of the orbital period, 𝑀 −𝑀0 = 𝑛 𝑡 − 𝑡0 .
The current position is obtained by solving the Kepler equation, 𝑀 = 𝐸 − 𝑒 sin 𝐸.
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Orbit Determination, #1

Determine the orbital elements from the position and velocity.

Suppose that at a certain time 𝑡, the position 𝐫 and velocity 𝐯 of a spacecraft in the ECI system are obtained by radar 
observation, etc. The following three are immediately obtained.

 Specific angular momentum vector

 Line-of-node vector

 Eccentricity vector

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

𝐡 = 𝐫 × 𝐯 =

𝐈 𝐉 𝐊
𝑟𝑖 𝑟𝑗 𝑟𝑘
𝑣𝑖 𝑣𝑗 𝑣𝑘

= ℎ𝑖𝐈 + ℎ𝑗𝐉 + ℎ𝑘𝐊

ℎ𝑖 = 𝑟𝑗𝑣𝑘 − 𝑟𝑘𝑣𝑗 , etc.

𝐧 = 𝐊 × 𝐡 =

𝐈 𝐉 𝐊
0 0 1
ℎ𝑖 ℎ𝑗 ℎ𝑘

= −ℎ𝑗𝐈 + ℎ𝑖𝐉

𝐞 =
𝐤

𝜇

𝐡 is orthogonal to the orbital plane

𝐧 is orthogonal to 𝐊 and 𝐡, because 𝐧 is contained 
in both the equatorial and orbital planes.

This has a perigee direction from the center of the Earth, 
and vector whose magnitude is equal to the eccentricity.
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The following parameters are obtained one after another.

𝑖 is the corner between 𝐊 and 𝐡: cos 𝑖 =
𝐊∙𝐡

ℎ
=

ℎ𝑘

ℎ

Ω is the corner between 𝐈 and 𝐧: cosΩ =
𝐈∙𝐧

𝑛
=

𝑛𝑖

𝑛

𝜔 is the corner between 𝐧 and 𝐞: cos𝜔 =
𝐧∙𝐞

𝑛𝑒
, sin𝜔 =

𝐧×𝐞

𝑛𝑒

𝑓0 is the corner between 𝐞 and𝐫0: cos 𝑓0 =
𝐞∙𝐫0

𝑒𝑟0

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

𝑝 =
𝐡 2

𝜇
, 𝑒 = 𝐞 , 𝑎 =

𝑝

1 − 𝑒2

Line of node
Ascending node

Descending node

Perigee

Position at an epoch

:

From 𝐧 × 𝐞 = 𝑛𝑒 sin𝜔 ∙P,
P is the unit vector perpendicular to the orbital plane.
(see the orbital plane coordinate system (PQW system))
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Orbit Determination, #2

Determine the position and velocity from the orbital elements..

Suppose that orbit six elements, 𝑝, 𝑒, 𝑖, Ω,𝜔, 𝑓, is obtained.

In the orbital plane coordinate system, 𝐫 = 𝑟 cos 𝑓 𝐏 + 𝑟 sin 𝑓 𝐐

Differentiating this yields ሶ𝐫 = 𝐯 = ሶ𝑟 cos 𝑓 − 𝑟 ሶ𝑓 sin 𝑓 𝐏 + ሶ𝑟 sin 𝑓 − 𝑟 ሶ𝑓 cos 𝑓 𝐐

From 𝑟 = 𝑝 1 + 𝑒 cos 𝑓 −1 and 𝑟2 ሶ𝑓 = ℎ = 𝜇𝑝,

ሶ𝑟 = 𝑝 ∙ −1 ∙ 1 + 𝑒 cos 𝑓 −2∙ 𝑒 ሶ𝑓 − sin 𝑓 =
𝑝

1+𝑒 cos 𝑓
∙

𝑝

1+𝑒 cos 𝑓
∙
𝑒 ሶ𝑓 sin 𝑓

𝑝
=

𝑟2𝑒 ሶ𝑓 sin 𝑓

𝑝
=

ℎ𝑒 sin 𝑓

𝑝
=

𝜇𝑝𝑒 sin 𝑓

𝑝
=

𝜇

𝑝
𝑒 sin 𝑓

𝑟 ሶ𝑓 =
ℎ

𝑟
=

𝜇𝑝

𝑟
= 𝜇𝑝 ∙

1+𝑒 cos 𝑓

𝑝
=

𝜇

𝑝
1 + 𝑒 cos 𝑓

Then,

𝐯 =
𝜇

𝑝
𝑒 sin 𝑓 cos 𝑓 −

𝜇

𝑝
1 + 𝑒 cos 𝑓 sin 𝑓 𝐏 +

𝜇

𝑝
𝑒 sin 𝑓 cos 𝑓 +

𝜇

𝑝
1 + 𝑒 cos 𝑓 cos 𝑓 𝐐 =

𝜇

𝑝
−sin 𝑓 𝐏 + 𝑒 + cos 𝑓 𝐐

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination
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Characteristic Orbit, #1

△A0B0C0 is a spherical triangle on the sphere centered at O with OA0 = OB0 = OC0.
Now, if C = 90∘, it is a right spherical triangle and the following holds:

sin 𝐴 =
sin 𝑎

sin 𝑐
=

cos 𝐵

cos 𝑏
, cos 𝐴 =

tan 𝑏

tan 𝑐
, tan 𝐴 =

tan 𝑎

sin 𝑏

sin 𝐵 =
sin 𝑏

sin 𝑐
=

cos 𝐴

cos 𝑎
, cos 𝐵 =

tan 𝑎

tan 𝑐
, tan𝐵 =

tan 𝑏

sin 𝑎

cos 𝑐 = cos 𝑎 cos 𝑏 = cot 𝐴 cot 𝐵

If we launch with an azimuth angle of 𝜉 with respect to north from a launch point (L)
at latitude of 𝜆𝑎, we get

𝐴 = 𝜉, 𝐵 = 𝑖, 𝐶 =
𝜋

2
, 𝑏 = 𝜆𝑎

0 ≤ 𝜆𝑎 ≤
𝜋

2
⟹ 1 ≥ cos 𝜆𝑎 ≥ 0, 0 ≤ 𝜉 ≤ 𝜋 ⟹ 0 ≤ sin 𝜉 ≤ 1

then, sin 𝜉 =
cos 𝑖

cos 𝜆𝑎
⟹ cos 𝑖 = cos 𝜆𝑎 sin 𝜉 ≤ cos 𝜆𝑎.

Therefore, 𝑖 ≥ 𝜆𝑎 meaning that inclination cannot be smaller than launch point latitude.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination
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Characteristic Orbit, #2

 Launch due east

When selected 𝜉 =
𝜋

2
, it becomes launch due east and 𝑖 = 𝜆𝑎.

This is the direction in which Earth's rotation speed (𝑣30° = 0.403 [km/s], 𝑣45° = 0.329 [km/s]) can be used most efficiently.
The launch vehicle accelerates a smaller amount of fuel, which reduces the amount of fuel carried and increases weight of 
payload. This is often the case with astronomical observation satellites, which need to carry many observation instruments.

Latitude of the world's launch sites

 Guiana Space Centre (ESA) at 5 degrees and 3 minutes north latitude

 Christmas Island (NASDA, former a part of JAXA) at 1 degrees and 53 minutes north latitude

 John F. Kennedy Space Center (NASA) at 28 degrees and 31 minutes north latitude

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

The reasons for having a launch site in a lower-latitude region are as follows:
1. To secure the degree of freedom of inclination of an orbit by launch azimuth angle.
2. To use the Earth's rotation speed.
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 𝑱𝟐 term
Since the Earth is not truly spherical and its density distribution is not spherically symmetric,
the Earth's gravity field is not spherically symmetric.

𝑈 𝑟 = −
𝜇

𝑟
1 − σ𝑙=2

∞ 𝐽𝑙
𝑅⊕

𝑟

𝑙
𝑃𝑙 sin 𝜑 + σ𝑙=2

∞ σ𝑚=0
𝑙 𝐽𝑙𝑚

𝑅⊕

𝑟

𝑙
𝑃𝑙𝑚 sin𝜑 cos𝑚 𝜆 − 𝜆𝑙𝑚

𝐽𝑙𝑚
2 = 𝐶𝑙𝑚

2 + 𝑆𝑙𝑚
2 , 𝜆𝑙𝑚 = Τtan−1

𝑆𝑙𝑚

𝐶𝑙𝑚
𝑚

Assuming axisymmetry here, the longitudinal distribution can be neglected.

𝑈 𝑟 = −
𝜇

𝑟
1 − σ𝑙=2

∞ 𝐽𝑙
𝑅⊕

𝑟

𝑙
𝑃𝑙 sin 𝜑

The term of 𝑙 = 1 is zero if the center of gravity is taken at the origin.
Assuming up to 𝑙 = 2, we have

𝑈 𝑟 = −
𝜇

𝑟
1 − 𝐽2

𝑅⊕

𝑟

2
𝑃2 sin 𝜑 , 𝑃2 sin 𝜑 =

3 sin 𝜑 2−1

2
, 𝐽2 = −𝐶20 = 1.08263 × 10−3

The term of 𝑙 = 2 term is called the 𝑱𝟐 term, and the terms of 𝑙 ≥ 3 is quite small compared to the 𝐽2 term.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

Displacement from the geoid
http://icgem.gfz-potsdam.de/

𝐽𝑙 = −𝐶𝑙0

𝐶𝑙𝑚, 𝑆𝑙𝑚 : Coefficients of the nth-degree mth-order spherical harmonics 

Legendre polynomial Associated Legendre function of the first kind

http://icgem.gfz-potsdam.de/
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𝑱𝟐 term, cont.

The 𝐽2 term represents the north-south distortion of the gravity field, which produces an action that moves the orbital plane 
closer to the equatorial plane.

Gyroscopic effect of this action and orbital motion perturbs RAAN, argument of perigee, and inclination.

ሶΩ = −
3

2
𝑛

𝑅⊕
2

𝑎2 1−𝑒2 2 𝐽2 cos 𝑖 , 𝑛 =
𝜇

𝑎3

ሶ𝜔 = −
3

4
𝑛

𝑅⊕
2

𝑎2 1−𝑒2 2 𝐽2 1 − 5 cos2 𝑖

ሶ𝑀 = 𝑛 +
3

4
𝑛

𝑅⊕
2

𝑎2 1−𝑒2 Τ3 2 𝐽2 3 cos2 𝑖 − 1

RAAN moves westward when the orbit inclination is less than 90 degrees,
and moves eastward when the orbit inclination is greater than 90 degrees.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination
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 Sun-Synchronous Orbit, SSO

By matching the change in RAAN due to the 𝐽2 term
to the angular velocity of the Earth's revolution,
the angle between the orbital plane and the sun direction
can be made nearly constant.

This makes it possible to maintain a constant amount of power generation throughout the year, 
and it is preferred for Earth, solar, and astronomical observation satellites because the positional 
relationship between the target and the sun as seen from the satellite is nearly constant.

Since the change in RAAN due to the 𝐽2 term should match the angular velocity of the Earth 
revolution, the sun synchronization condition is

ሶΩ = −
3

2
𝑛

𝑅⊕

𝑎

2
𝐽2 cos 𝑖 or    −𝑎 Τ7 2 1 − 𝑒2 2 = 2.0893 × 1014 ∙ cos 𝑖

From this, the relationship between the semimajor axis radius and the inclination can be obtained.

Example
Confirm that the orbit of Japanese Earth observation satellite "Daichi-2" satisfies
the sun-synchronous condition.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

By https://en.wikipedia.org/wiki/ALOS-2 Adapted.

https://en.wikipedia.org/wiki/ALOS-2%20/


Lap 1Lap 2Lap 3

Equator
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 Earth Recurrent Orbit / Earth Sub-recurrent Orbit

Earth recurrent orbit is an orbit in which a satellite orbits the Earth 𝑁 times during one rotation of the Earth.
𝑁 is an integer and called the recurrent number of satellite.

Earth Sub-recurrent orbit is an orbit in which a satellite orbits the Earth 𝑁 times during 𝑀 times rotation of the Earth.
𝑀 is an integer and called the recurrent days of satellite.

The recurrent/sub-recurrent condition is 𝜔⊕ − ሶΩ 𝑁 = 𝑛 + ሶ𝜔 𝑀.

These reproduce the positional relation between the satellite and the Earth's surface at regular intervals.

Taking both conditions of sun-synchronous and (sub-)recurrent orbit
into consideration realizes sun-synchronous Earth (sub-)recurrent orbit.

 Geosynchronous Orbit

The orbits with 𝑁 = 1 and 𝑀 = 1 (one sidereal day).

Geo-Stationary Orbit (GEO) is one of them, and is often used
for permanent communication and weather observation
because it always appears to be in the same position from
the ground.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

Sahara Lab., TMU
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 Molniya Orbit

It is difficult to launch geostationary satellites at the equator in high latitude
countries, and the low elevation angle makes their operation inefficient.
Therefore, an orbit with the following orbital elements was devised to allow
a longer operational time by placing the apogee above the country:
𝑎 = 26,600 km ⟹ 𝑇 ≃ 12[hrs], 𝑒 = 0.75, and 𝑖 = 63.435° for ሶ𝜔 ≃ 0.

 Tundra Orbit

For 24-hour operations in Europe, Tundra orbit with the following orbital elements requires only three 
satellites, compared to four units for a Molniya orbit:
𝑟𝑝 = 24,000 km , 𝑟𝑎 = 47,000[km] ⟹ 𝑇 ≃ 24[hrs], and  𝑖 = 63.435° for ሶ𝜔 ≃ 0.

 Quasi-Zenith Orbit, QZO

The orbit period is one sidereal day (geosynchronous orbit), and has an appropriate eccentricity and 
inclination so that the satellite can stay over a specific area for a long period of time.

A satellite in a QZO is called a quasi-zenith satellite (QZS), and a constellation in a QZO is called a quasi-
zenith satellite system (QZSS).
Example: Japanese Michibiki, and so on.

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

"Quasi-Zenith Satellite System Orbit, which is an Inclined Geosynchronous Orbit (IGSO).
Inclination: 45°; eccentricity: 0.09; argument of periapsis: 270°." © Tubas (Licensed under CC BY-SA 3.0）
https://ja.wikipedia.org/wiki/%E6%BA%96%E5%A4%A9%E9%A0%82%E8%A1%9B%E6%98%9F#/media/%E3%8
3%95%E3%82%A1%E3%82%A4%E3%83%AB:Qzss-45-0.09.jpg

https://en.wikipedia.org/wiki/Molniya_orbit

https://ja.wikipedia.org/wiki/%E6%BA%96%E5%A4%A9%E9%A0%82%E8%A1%9B%E6%98%9F#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Qzss-45-0.09.jpg
https://en.wikipedia.org/wiki/Molniya_orbit
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1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination

H-IIA #24

Earth observation satellite, DAICHI-2

H-IIA #30

Astronomical satellite, HITOMI

Ogasawara

Christmas

Santiago

Mingenew

Maspalomas

Kiruna

H-IIA #29

(Communication satellite, Telstar 12V)

Sahara Lab., TMU

The direction of the rocket's flight reveals
what kind of satellite is on board.
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Flight Time

The time of flight from perigee (P) to any point on the orbit (Q), expressed in
eccentric anomaly, is obtained using Kepler‘s second law 

𝑡Q−𝑡P

𝑆QFP
=

𝑇

𝜋𝑎𝑏
, 𝑇 = 2𝜋

𝑎3

𝜇

an elliptical orbit, 
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1, and auxiliary circle, 

𝑥2

𝑎2
+

𝑦2

𝑎2
= 1, as follows:

𝑦Q =
𝑏

𝑎
𝑎2 − 𝑥2, 𝑦B = 𝑎2 − 𝑥2 ⟹

𝑦Q

𝑦B
=

𝑏

𝑎
= 1 − 𝑒2

Then,

𝑆QFP = 𝑆QCP − 𝑆QCF =
𝑎𝑏

2
𝐸 − 𝑒 sin𝐸

𝑆QCF =
1

2
∙ 𝑎𝑒 − 𝑎 cos𝐸 ∙

𝑏

𝑎
𝑎 sin 𝐸 =

𝑎𝑏

2
𝑒 sin 𝐸 − cos𝐸 sin 𝐸

𝑆QCP =
𝑏

𝑎
𝑆BCP =

𝑏

𝑎
𝑆OBP − 𝑆OBC =

𝑏

𝑎

𝑎2

2
𝐸 −

𝑎2

2
cos 𝐸 sin 𝐸 =

𝑎𝑏

2
𝐸 − cos𝐸 sin 𝐸

We obtain ∴ 𝑡Q − 𝑡P =
𝑇

𝜋𝑎𝑏
𝑆QFP =

𝑎3

𝜇
𝐸 − 𝑒 sin 𝐸

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination
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From the geometric relationship, 𝑎 cos𝐸 = 𝑎𝑒 + 𝑟 cos 𝑓

Also, cos 𝐸 =
𝑎𝑒+

𝑎 1−𝑒2

1+𝑒 cos 𝑓
cos 𝑓

𝑎
=

𝑒+cos 𝑓

1+𝑒 cos 𝑓
from 𝑟 =

𝑝

1+𝑒 cos 𝑓
=

𝑎 1−𝑒2

1+𝑒 cos 𝑓

That is, if 𝑒 and 𝑓 are known, 𝐸 is obtained.

The time of flight between any two points is obtained as follows for
i) without a perigee passage and ii) with a perigee passage.

𝑡2 − 𝑡1 = 𝑛𝑇 + 𝑡2 − 𝑡P − 𝑡1 − 𝑡P =
𝑎3

𝜇
2𝑛𝜋 + 𝐸2 − 𝑒 sin 𝐸2 − 𝐸1 − 𝑒 sin 𝐸1

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination
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The following is for reference only.

Parabolic orbit

𝑡 − 𝑡𝑝 =
1

2 𝜇
𝑝𝐷 +

1

3
𝐷3 , where 𝐷 = 𝑝 tan

𝑓

2
is the eccentric anomaly in the case of parabolic orbit.

Hyperbolic orbit
The right-angled hyperbola (asymptotic lines are orthogonal) passing through the perigee is used as the auxiliary line.

𝑡 − 𝑡𝑝 =
−𝑎 3

𝜇
𝑒 sinh𝐹 − 𝐹

where 𝐹 = ln 𝑦 + 𝑦2 − 1 , 𝑦 = cosh𝐹 =
𝑒+cos 𝑓

1+𝑒 cos 𝑓
is the eccentric anomaly in the case of hyperbolic orbit.

𝐹 > 0 0 ≤ 𝑓 < 𝜋 , 𝐹 < 0 𝜋 ≤ 𝑓 < 2𝜋

1. Basic of Orbital Mechanics
1.2 Orbit Elements and Orbit Determination
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Single impulse orbit transfer

Orbital velocity is obtained as 𝐸 =
𝑣2

2
−

𝜇

𝑟
= −

𝜇

2𝑎
⟹ 𝑣 = 𝜇

𝟐

𝑟
−

1

𝑎

Supposed the impulse approximation, orbit transfer is completed instantaneously
at the Q point from O𝑖 to the coplanar orbit O𝑓.

The orbital velocity and flight path angle at Q on O𝑖 are

𝑣𝑖 = 𝜇
2

𝑟
−

1

𝑎𝑖
and    𝜙𝑖 = cos−1

ℎ𝑖

𝑟𝑣𝑖
from  ℎ𝑖 = 𝜇𝑝𝑖 = 𝜇𝑎𝑖 1 − 𝑒𝑖

2

The orbital velocity and flight path angle at Q on O𝑓 are obtained in the same way.

Therefore,
the velocity increment to be given is obtained using vector triangle
and the cosine theorem as follows.

Δ𝑣 = 𝑣𝑖
2 + 𝑣𝑓

2 − 2𝑣𝑖𝑣𝑓 cos 𝜙𝑖 + 𝜙𝑓

1. Basic of Orbital Mechanics
1.3 Orbit Transfer
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Single impulse orbit and plane transfer

In the case of orbit plane change, we obtain the velocity increment
from 𝑣𝑖 = 𝑣𝑓 = 𝑣, as

Δ𝑉 = 𝑣2 + 𝑣2 − 2𝑣𝑖𝑣𝑓 cos 𝜃 = 2𝑣2 1 − cos 𝜃 = 2𝑣 sin
𝜃

2

These results indicate that transferring the orbit plane is quite difficult.

Therefore, orbit plane transfers should be conducted either by a rocket or at apogee, where orbital velocity is lower.

Note that the velocity increment, 𝜟𝑽, is a positive value when calculating the propellant required as follows,
even for deceleration.

Estimating Δ𝑉 is one of the major objectives of orbit design.

Δ𝑉 is used to judge mission feasibility, and also for satellite system design through the Tsiolkovsky rocket equation.

∆𝑉 = 𝑔𝐼𝑆𝑃 ln
𝑚𝑖

𝑚𝑓

1. Basic of Orbital Mechanics
1.3 Orbit Transfer
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If the velocity increment is given tangentially at a point on the circular orbit,

 The altitude of the injection point does not change.

 The altitude of the antipodal point of the injection point changes.

 As a result, the injection point is perigee and its antipodal point is apogee or infinity.

1. Basic of Orbital Mechanics
1.3 Orbit Transfer

Parabola

Hyperbola

Circle

Ellipse
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Hohmann transfer

A transfer from the initial orbit O𝑖 via the transition orbit O𝑡 to the target orbit O𝑓 with two impulse injections.

1. Giving Δ𝑉1 is given at P in O𝑖,
the antipodal altitude of P increases and moves to O𝑡.

2. Giving Δ𝑉2 is given at A in O𝑡,
the antipodal altitude of P increases and moves to O𝑓.

𝑎𝑡 =
𝑟𝑓+𝑟𝑖

2
and 𝑒𝑡 =

𝑟𝑓−𝑟𝑖

𝑟𝑓+𝑟𝑖
for O𝑡,

𝑣P = 𝜇
2

𝑟𝑖
−

1

𝑎𝑡
=

𝜇

𝑟𝑖
∙

2𝑟𝑓

𝑟𝑓+𝑟𝑖
= 𝑣𝑖

2𝑟𝑓

𝑟𝑓+𝑟𝑖
⟹ Δ𝑉1 = 𝑣P − 𝑣𝑖 = 𝑣𝑖

2𝑟𝑓

𝑟𝑓+𝑟𝑖
− 1

𝑣A = 𝜇
2

𝑟𝑓
−

1

𝑎𝑡
=

𝜇

𝑟𝑓
∙

2𝑟𝑖

𝑟𝑓+𝑟𝑖
= 𝑣𝑓

2𝑟𝑖

𝑟𝑓+𝑟𝑖
⟹ Δ𝑉2 = 𝑣𝑓 − 𝑣A = 𝑣𝑓 1 −

2𝑟𝑖

𝑟𝑓+𝑟𝑖

Therefore, Δ𝑣𝑡𝑜𝑡𝑎𝑙 = Δ𝑣1 + Δ𝑣2

In the range Τ𝑟𝑓 𝑟𝑖 < 11.9, the minimum energy.

1. Basic of Orbital Mechanics
1.3 Orbit Transfer
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Bi-elliptic transfer 

Three impulse orbit transfer via two transition orbits, Ot1 and Ot2.

By adjusting the altitude of A, the phase adjustment on the target orbit
or the meeting time with the target on the target orbit can be adjusted.

1. Basic of Orbital Mechanics
1.3 Orbit Transfer
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The following assumptions are made.

1. Planetary orbits are all in the ecliptic plane (i.e., co-planar orbit) and form a circular orbit around the sun.

2. During flight, they are subject only to the gravitational pull of the sun.

Considering the universal gravitation from Body 1 to Body 2 as principal and the universal gravitation from Body 3 as 
perturbation, it follows that the perturbation force on Body 2 from Body 3 is more dominant within the following distance 
range from the boundary.

𝑟 ≈ 𝜌
𝑚3

𝑚1

Τ2 5

This range is called the sphere of influence.

Within the sphere of influence, the problem can be
approximated as a two-body problem with Body 3 and Body 2,
and outside the sphere of influence, with Body 1 and Body 2.

In the Sun-Earth system, the Earth's sphere of influence is

𝑟 ≤ 𝜌
𝑚⨁

𝑚⨀

Τ2 5

= 1.496 × 108 ∙
5.974×1024

1.989×1030

0.4

≃ 9.247 × 105km

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Body 2 (spacecraft), 

Body 1, Body 3, 



KiboCUBE Academy 47

Considering the sphere of influence, interplanetary flight is divided 
into the following three phases.

1. Phase I: Departure Phase
For the two-body problem of the Earth and the spacecraft, the 
spacecraft is inserted into a hyperbolic orbit with the Earth as 
the focal point.

2. Phase II: Interplanetary phase
For the two-body problem of the sun and the spacecraft, the 
spacecraft is connected to an elliptical orbit with the sun as the 
focal point.

3. Phase III: Arrival Phase
The spacecraft enters into a hyperbolic orbit with the target 
planet as the focal point for the two-body problem of the target 
planet and the spacecraft.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Sun, 

Earth, 

Mars, Phase I

Phase II

Phase III



Escape from the Sphere of Influence

In order to escape the Earth's gravitation sphere,
It must have sufficient velocity to reach infinity from the Earth and takes a hyperbolic orbit with respect to the Earth.
The boundary of the sphere of influence is so far away and is regarded as practically infinite.
That is, it needs to have a positive velocity at the boundary of the sphere of influence.

From the conservation of energy equation,

𝐸 =
𝑣𝑝/⨁
2

2
−

𝜇⨁

𝑟𝑝/⨁
=

𝑣∞/⨁
2

2
−

𝜇⨁

𝑟∞/⨁
⟶

𝑣∞/⨁
2

2
∵ 𝑟∞/⨁ → ∞

∴ 𝑣𝑝/⨁ = 𝑣∞/⨁
2 +

2𝜇⨁

𝑟𝑝/⨁
⟺ 𝑣∞/⨁ = 𝑣𝑝/⨁

2 −
2𝜇⨁

𝑟𝑝/⨁

The velocity increment required to escape the sphere of influence from orbit radius 𝑟𝑝/⨁ is ∆𝑉 = 𝑣𝑝/⨁ −
𝜇⨁

𝑟𝑝/⨁
.

True anomaly when reaching the boundary of the sphere of influence, 𝑟∞/⨁, is

cos 𝑓∞/⨁ =
1

𝑒

𝑝

𝑟∞/⨁
− 1 ⟶ −

1

𝑒
⟹ 𝑓∞/⨁ = cos−1 −

1

𝑒

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Sphere of influence

𝑒 = 1 +
2𝐸ℎ2

𝜇2

KiboCUBE Academy 48
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Passage of Planet

A spacecraft from interplanetary space passes through the sphere of influence of planet B.
Assume that planet B is stationary.

Distance between asymptote line and the planet : ∆= −𝑎 𝑒2 − 1
Deflection angle with passage : 𝛿
True anomaly on asymptotic line with passage : 𝑓∞/𝐵

From the law of energy conservation,

𝑣∞/𝐵
− = 𝑣∞/𝐵

+ = 𝑣∞/𝐵 , 𝐸 =
𝑣∞/𝐵
2

2
= −

𝜇𝐵

2𝑎
⟹ 𝑎 = −

𝜇𝐵

𝑣∞/𝐵
2

And,

𝑓∞/𝐵 = cos−1 −
1

𝑒
=

𝜋

2
+

𝛿

2
⟹𝛿 = 2 sin−1

1

𝑒

Specific angular momentum is

ℎ = 𝑣∞/𝐵∆=
𝜇𝐵

−𝑎
∙ −𝑎 𝑒2 − 1 = 𝜇𝐵𝑎 𝑒2 − 1 =

𝜇𝐵
2

𝑣∞/𝐵
2 𝑒2 − 1

Eccentricity is 𝑒2 = 1 +
𝑣∞/𝐵
4 ∆2

𝜇𝐵
2 or 𝑒 = 1 +

𝑟𝑝/𝐵𝑣∞/𝐵
2

𝜇𝐵

After all, Given 𝑣∞/𝐵 and ∆, 𝑒 and 𝑎 are determined; 𝑣𝑝/𝐵, 𝑓∞/𝐵, and 𝛿 are also determined.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Boundary of

sphere of influence

asymptotic line
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Swing-by, #1

Planet B is actually in motion at AA.
If we superimpose the velocities of planet B, the spacecraft from the perspective of planet B, 
and the spacecraft from the inertial coordinate system,

Can describe the relationship geometrically from velocity triangles.

Before passing the planet : 𝑣∞
− = 𝑣𝐵

2 + 𝑣∞/𝐵
2 − 2𝑣𝐵𝑣∞/𝐵 cos 𝑓∞/𝐵 − 𝛿

After passing the planet : 𝑣∞
+ = 𝑣𝐵

2 + 𝑣∞/𝐵
2 − 2𝑣𝐵𝑣∞/𝐵 cos 𝑓∞/𝐵

When cos 𝑓∞/𝐵 < cos 𝑓∞/𝐵 − 𝛿 , the velocity is increased by passing the planet, 𝑣∞
+ > 𝑣∞

−. 

This is called swing-by-acceleration.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Boundary of

sphere of influence

asymptotic line
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Swing-by, #1

Considering the case on the right figure in the same way, 𝑣∞
+ < 𝑣∞

−.
This is called swing-by-deceleration.

So, roughly speaking,
if it passes behind the planet, it is an  swing-by-acceleration,
if it passes in front of the planet, it is a  swing-by-deceleration.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Boundary of

sphere of influence

asymptotic line



KiboCUBE Academy 52

Flight to Mars

Initial study of the Mars Orbiter Program.

In general, it is easiest to start with Phase II.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets
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Flight to Mars, Phase II

Semimajor axis of the transfer orbit : 𝑎𝐻 =
𝑟⊕+𝑟𝑚

2
= 1.8875 × 108km

Velocity at perihelion : 𝑣𝑝/⨀ = 𝜇⨀
2

𝑟⊕
−

1

𝑎𝐻
= 32.73km/s

Velocity at escape from the Earth's sphere of influence:

𝑣⊕ =
𝜇⨀
𝑟⊕

= 29.78km/s, 𝑣∞/⨁ = 𝑣𝑝/⨀ − 𝑣⊕ = 2.95km/s

Velocity at aphelion : 𝑣𝑎/⨀ = 𝜇⨀
2

𝑟𝑚
−

1

𝑎𝐻
= 21.48km/s

Velocity of entry into the sphere of influence of Mars:

𝑣𝑚 =
𝜇⨀
𝑟𝑚

= 24.13km/s, 𝑣∞/𝑚 = 𝑣𝑎/⨀ − 𝑣𝑚 = −2.65km/s

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Note carefully the direction of the arrows in the
above figure (defining the direction of motion).
This negative value means that the spacecraft
will enter from the front of Mars.

Earth at departure, 

Mars at arrival, 
Sun, 

Phase II

Transfer orbit
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Flight to Mars, Phase I

Position at injection point : 𝑟𝑝/⨁ = 200 + 6378 = 6578km

For the Earth-escape trajectory : 𝑣∞/⨁ = 2.95km/s

Then,

𝑣𝑝/⨁ = 𝑣∞/⨁
2 +

2𝜇⨁
𝑟𝑝/⨁

= 2.952 +
2 ∙ 3.986 × 105

200 + 6378
= 11.40km/s

For the parking orbit : 𝑣𝑐/⨁ =
𝜇⨁

𝑟𝑐/⨁
=

3.986×105

200+6378
= 7.78km/s

Therefore, the velocity increment to be given at the injection point is
∆𝑉1= 𝑣𝑝/⨁ − 𝑣𝑐/⨁ = 𝟑. 𝟔𝟐𝐤𝐦/𝐬

The followings are obtained for the Earth-escape trajectory:

𝑒 = 1 +
𝑟𝑝/⨁𝑣∞/⨁

2

𝜇⊕
= 1 +

6578∙2.952

3.986×105
= 1.14,   𝑓∞/⨁ = cos−1 − Τ1 𝑒 = 151.3° ,

𝛿

2
= 𝑓∞/⨁ −

𝜋

2
= 61.3°

∆=
𝜇⨁

𝑣∞/⨁
2 𝑒2 − 1 =

3.986 × 105

2.952
1.142 − 1 = 1.372 × 104km

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets
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compared to interplanetary 
space. Therefore, it is 
reasonable to set the starting 
point in Phase II at the Earth's 
position.
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Flight to Mars, Phase III

Position at injection point : 𝑟𝑝/𝑚 = 500 + 3397 = 3897km

For the Mars approach trajectory : 𝑣∞/𝑚 = −2.65km/s

Then,

𝑣𝑝/𝑚 = 𝑣∞/𝑚
2 +

2𝜇𝑚
𝑟𝑝/𝑚

= 2.652 +
2 ∙ 4.283 × 104

500 + 3397
= 5.39km/s

For the orbit around Mars : 𝑣𝑐/𝑚 =
𝜇𝑚

𝑟𝑐/𝑚
=

4.283×104

500+3397
= 3.32km/s

Therefore, the velocity increment to be given at the injection point is
∆𝑉2= 𝑣𝑐/𝑚 − 𝑣𝑝/𝑚 = −𝟐. 𝟎𝟕𝐤𝐦/𝐬

The followings are obtained for the Mars approach trajectory:

𝑒 = 1 +
𝑟𝑝/𝑚𝑣∞/𝑚

2

𝜇𝑚
= 1 +

3897∙2.652

4.283×104
= 1.65,    𝑓∞/𝑚 = cos−1 − Τ1 𝑒 = 127.6° ,

𝛿

2
= 𝑓∞/𝑚 −

𝜋

2
= 37.6°

∆=
𝜇𝑚

𝑣∞/𝑚
2 𝑒2 − 1 =

4.283 × 104

2.652
1.642 − 1 = 7.928 × 103km

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets
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Flight to Mars, summary

From the above, it is concluded that the necessary velocity 
increment for the spacecraft in the Mars Orbiter Program is 
∆𝑉𝑡𝑜𝑡𝑎𝑙= ∆𝑉1 + ∆𝑉2 = 3.62 + 2.07 = 𝟓. 𝟔𝟗𝐤𝐦/𝐬.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets



Injection point, P

Approach point, Q
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Flight to the Moon

Since the Earth and the moon are close, the sphere of influence of the sun is not considered,
and the sphere outside the moon's sphere of influence is considered to be the Earth's sphere of influence.

Initial conditions : 𝐫0, 𝐯0, 𝜙0
Termination condition: 𝜆1

For the injection point (P), Specific dynamic energy: =
𝑣0
2

2
−

𝜇⨁

𝑟0
,

and specific angular momentum: ℎ = 𝑟0𝑣0 cos𝜙0

For the boundary of the lunar sphere of influence (point Q),

Let Rs be the range of the moon‘s sphere of influence, then from the cosine theorem,

we have 𝑟1 = 𝐷2 + 𝑅𝑠
2 − 2𝐷𝑅𝑠 cos 𝜆1

From the law of energy conservation, 𝐸 = Τ𝑣1
2 2 − Τ𝜇⨁ 𝑟1 ⟶ 𝑣1 = 2 𝐸 + Τ𝜇⨁ 𝑟1

From the law of conservation of angular momentum, 𝜙1 = cos−1
ℎ

𝑟1𝑣1

From the geometric relationship, 𝑟1 sin 𝛾1 = 𝑅𝑠 sin 𝜆1

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets
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Departure to the boundary of the Moon's sphere of influence

For the transfer orbit: 𝑝 =
ℎ2

𝜇⨁
, 𝑎 = −

𝜇⨁

2𝐸
, 𝑒 = 1 −

𝑝

𝑎

Then, 𝑓𝑖 = cos−1
𝑝−𝑟𝑖

𝑟𝑖𝑒
from    𝑟 =

𝑝

1+𝑒 cos 𝑓

and the eccentric anomaly: 𝐸𝑖 = cos−1
𝑒+cos 𝑓𝑖

1+𝑒 cos 𝑓𝑖

Therefore, 𝑡1 − 𝑡0 =
𝑎3

𝜇⨁
𝐸1 − 𝑒 sin 𝐸1 − 𝐸0 − 𝑒 sin 𝐸0

Phase condition

During 𝑡1 − 𝑡0, the moon orbits by 𝜔𝑚 𝑡1 − 𝑡0 .

From the geometric relationship, the initial phase should be 𝛾0 = 𝑓1 − 𝑓0 − 𝛾1 − 𝜔𝑚 𝑡1 − 𝑡0 .

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

Note that so far this is the case with the Earth as the central object.

Injection point, P

Approach point, Q

In practice, 𝑟0, 𝑣0, 𝜙0, and 𝛾0 are tried and tested 
in consideration of mission requirements
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Connection condition

The initial value of the position of the moon-centered orbit is
𝑟2 = 𝑅𝑠

and the relative velocity of the spacecraft to the moon center is
𝐯2 = 𝐯1 − 𝐯𝑚, 𝑣𝑚 = 𝐷𝜔𝑚

From the cosine theorem,

𝑣2 = 𝑣1
2 + 𝑣𝑚

2 − 2𝑣1𝑣𝑚 cos 𝜙1 − 𝛾1

From geometric relations,
𝑣2 sin 𝛼 = 𝑣1 cos 𝜙1 − 𝛾1 − 𝜆1 − 𝑣𝑚 cos 𝜆1

⟶ 𝛼 = sin−1
𝑣1

𝑣2
cos 𝜙1 − 𝛾1 − 𝜆1 −

𝑣𝑚

𝑣2
cos 𝜆1

The above conditions, 𝑟2, 𝑣2, and 𝛼 (position and velocity vectors 
from the moon's viewpoint at the time of moon entry) were obtained.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

進入点，Q
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In the lunar perspective,

the specific dynamic energy is 𝐸𝑚 =
𝑣2
2

2
−

𝜇𝑚

𝑟2
,

and the specific angular momentum is ℎ𝑚 = 𝑟2𝑣2 sin 𝛼.

From the above, 𝑝𝑚 =
ℎ𝑚
2

𝜇𝑚
= 𝑎𝑚 1 − 𝑒𝑚

2 , 𝑒𝑚 = 1 +
2𝐸𝑚ℎ𝑚

2

𝜇𝑚
2

At the perilune, 𝑟𝑚𝑝 =
𝑝𝑚

1+𝑒𝑚
, 𝑣𝑚 = 2 𝐸𝑚 +

𝜇𝑚

𝑟𝑚𝑝

 When 𝑟𝑚𝑝 > 𝑅𝑚, do nothing and flyby the moon.

 When 𝑟𝑚𝑝 < 𝑅𝑚, impinges on the moon and becomes an impactor.

 Decelerates of ∆𝑉𝑚= 𝑣𝑚𝑝 −
𝜇𝑚

𝑟𝑚𝑝
at perihelion, enters lunar orbit, and becomes an orbiter.

 Decelerates further, makes a soft landing, and becomes a lander.

1. Basic of Orbital Mechanics
1.4 Flight to the Moon and the Planets

進入点，Q



2. Development of Orbital Mechanics
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This chapter introduces some of the more advanced topics of orbital mechanics.
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Gaussian Planetary Equations
is easier to use in orbit design than "Lagrangian planetary equation“ because it can introduce 
perturbations and thrust.

d𝑎

d𝑡
=

2

𝑛 1−𝑒2
𝑒 sin 𝑓 𝐹𝑟 +

𝑝

𝑟
𝐹𝜃 , 𝑛 =

𝜇

𝑎3

d𝑒

d𝑡
=

1−𝑒2

𝑛𝑎
sin 𝑓 𝐹𝑟 + cos𝑓 +

𝑒+cos 𝑓

1+𝑒 cos 𝑓
𝐹𝜃

d𝑖

d𝑡
=

𝑟 cos 𝜔+𝑓

𝑛𝑎2 1−𝑒2
𝐹𝑧

dΩ

d𝑡
=

𝑟 sin 𝜔+𝑓

𝑛𝑎2 1−𝑒2 sin 𝑖
𝐹𝑧

d𝜔

d𝑡
=

1−𝑒2

𝑛𝑎𝑒
−cos 𝑓 𝐹𝑟 + sin 𝑓 1 +

𝑟

𝑝
𝐹𝜃 −

𝑟 cot 𝑖 sin 𝜔+𝑓

ℎ
𝐹𝑧

d𝑀0

d𝑡
=

1

𝑛𝑎2𝑒
𝑝 cos 𝑓 − 2𝑒𝑟 𝐹𝑟 − 𝑝 + 𝑟 sin 𝑓 𝐹𝜃 −

d𝑛

d𝑡
𝑡 − 𝑡0

One example is the application of continuous micro-thrust to orbit transitions.
For the Hohmann transfer (upper right figure), Δ𝑉 = Δ𝑣1 + Δ𝑣2.
In the spiral transition (lower right figure), Δ𝑉 = 𝑣𝑖 − 𝑣𝑓.

In an orbit transfer from a 200 km altitude circular orbit to GEO, the spiral transition (Δ𝑉 = 4.71km/s) 
has a higher dV than the Hohmann transfer (Δ𝑉 = 3.93km/s), but less propellant is required if electric 
propulsion with a high specific impulse is used.

2. Development of Orbital Mechanics
2.1 Planetary Equation
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If a spacecraft departing from Earth experiences a velocity change outside of Earth's sphere 
of influence, it can perform a swing-by using Earth at the time of reconjunction.

When electric propulsion is used, it is called EPDVEGA.

2. Development of Orbital Mechanics
2.2 DVEGA

Earth at departure

Earth at reconjunction

Jupiter at arrival

Earth

at departure

Earth

at reconjunction

For example, by adjusting 𝑎, 𝑓con, 𝑟 Τ𝑝 ⨁, 𝑇𝑓,

and 𝑟′ Τ𝑝 ⨁ well, the orbit is designed to reach

the target planet.

Hohmann transfer achieves the transfer with
minimum energy when Τ𝑟𝑓 𝑟𝑖 < 11.9 , but

using DVEGA, the required ΔV can be smaller
than that of the Hohmann transfer because
the Earth's revolution energy can be used,
although it takes time in the order of years to
reach the target.

For example, to reach Jupiter from an Earth
orbit of 200 km altitude, the Hohmann
transition requires Δ𝑉 = 6.30 km/s, while
Δ𝑉 = 5.30 km/s with DVEGA. Sahara Lab., TMU
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Lambert’s Problem
Finds the unique orbit connecting two points, when given a departure point 𝐫𝐷,
an arrival point 𝐫𝐴, and a flight time 𝑇𝑓 between them.

Hohmann transfer gives the smallest ∆𝑉 orbital transfer between circular orbits where
the Earth at departure, the Sun, and the target planet at arrival are aligned.

What if this alignment does not hold?

There are an infinite number of orbits connecting two points.
Lambert's theorem states that given a time of flight, the transfer orbit is uniquely determined.

Lambert's Theorem
The time of flight of an orbit connecting two points is uniquely determined by its semimajor 
axis, 𝑎, 𝐫𝐷 + 𝐫𝐴 , and the linear distance, 𝑐, between the two points.
Note that it depends on the sum of the absolute values of 𝐫𝐷 and 𝐫𝐴, not on each of them.

If you can solve the Lambert's problem in addition to the orbit mechanics discussed in the 
previous chapter, you will be able to design any orbit.

2. Development of Orbital Mechanics
2.3 Lambert’s Problem

Earth

at departure

Target planet

at arrival

太陽

Hohmann

transfer

Earth

at departure

Target planet

at arrival

太陽

Transfer orbit

P

Q

As is clear from the upper and lower right figures, 
the Hohmann orbit has the smallest semimajor axis.



KiboCUBE Academy 65

Hill’s Equation
Describes the motion of a chaser (e.g., spacecraft) in the vicinity of a target 
(e.g., space station) in orbital motion with angular velocity 𝛚.
Adopted LVLH coordinate system, it is described as follows:

ሷ𝑥
ሷ𝑦
ሷ𝑧
=

2𝑛 ሶ𝑧 + 𝐹𝑥
−𝑛2𝑦 + 𝐹𝑦

3𝑛2𝑧 − 2𝑛 ሶ𝑥 + 𝐹𝑧

𝑦 is independent and single-oscillating.
𝑥 and 𝑧 are coupled. For example, to catch up with a forward target,
both the direction of altitude and the direction of travel must be controlled.

2. Development of Orbital Mechanics
2.4 Rendezvous Problem

Target

Chaser

LVLH coordinate
: direction of travel

: direction out-of-plane

: direction to center of Earth

C-W coordinate

: direction from center of Earth

: direction of travel

: direction out-of-plane

⦿

TC

C T

C T

T
C

Motion in inertial coordinate system

01000

x

z

-264

TC

Motion in the LVLH coordinate system

T

Such an orbit design is also possible.
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Poincaré's theorem
"When perturbations are added to an integrable system, the system generally becomes non-integrable.“
Therefore, the three-body problem is generally not solvable analytically, and its solution must be done numerically.

When 𝑚2 ≪ 𝑚1, 𝑚3 for one of the three bodies (spacecraft, 𝑚2),
the trajectory of the spacecraft moving in the gravity field of the other
two bodies (Body 1 and Body 3) can be obtained analytically.
This is called the restricted three-body problem.

When two bodies, excluding the spacecraft, are in circular motion, they can be treated as stationary in a co-
rotating system. This case is called the circular restricted three-body problem.

Since this is a co-rotating system, inertia terms as centrifugal force and Coriolis force appear in the equations of 
motion.

2. Development of Orbital Mechanics
2.5 Circular Restricted Three-Body Problem

Body 2 (spacecraft), 

Body 1, Body 3, 
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Lagrange Point

Equations of motion of a spacecraft in a rotating system as the dimensionless circular 
restricted three-body problem is as follows:

ሷ𝜉 − 2 ሶ𝜂 =
𝜕𝑊

𝜕𝜉

ሷ𝜂 + 2 ሶ𝜉 =
𝜕𝑊

𝜕𝜂
, 𝑊 =

1

2
𝜉2 + 𝜂2 +

𝑚1

𝐫−𝐫1
+

𝑚2

𝐫−𝐫2

ሷ𝜁 =
𝜕𝑊

𝜕𝜁

In a rotating system, there exist Lagrangian points L1 to L5 satisfying the following 
conditions where the position of the spacecraft does not change due to the balance 
between centrifugal force and gravity.

In the case of the Earth-Moon system, these are called
EML1: cis-lunar, EML2: trans-lunar, EML3: trans-Earth, EML4 & EML5: trojan point.

2. Development of Orbital Mechanics
2.5 Circular Restricted Three-Body Problem

Body 1

Body 3

Spacecraft

Center of gravity

L1 L2L3

L4

L5

60 deg

60 deg
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Lyapunov orbit
In the vicinity of L1 and L2, there exist periodic orbits that are Lyapunov stable in-plane or 
out-of-plane.
This is called a Lyapunov orbit.
https://www.youtube.com/watch?v=I3MNOTNMIa8

Distant Retrograde Orbit, DRO
Highly stable periodic orbits exist that retrograde in-plane around the secondary object.
https://youtu.be/X5O77OV9_ek?t=28

Halo Orbit / Lissajous Orbit
A family of Lyapunov orbits in the plane yields periodic orbits with periodicity in the out-of-
plane direction at a certain bifurcation point. This is called a halo orbit. Because the halo 
orbit is unstable, a small Δ𝑉 is required to maintain the orbit.
A halo orbit with an extremely large uniaxial direction is called Near Rectilinear Halo Orbit 
(NRHO), and its adoption by the Lunar Orbital Platform-Gateway (LOP-G) is being 
considered.
https://www.youtube.com/watch?v=X5O77OV9_ek
If the orbit is aperiodic, it is called Lissajous orbit.

2. Development of Orbital Mechanics
2.5 Circular Restricted Three-Body Problem

Lunar Orbital Platform-Gateway, LOP-G
https://en.wikipedia.org/wiki/Lunar_Gateway

https://www.youtube.com/watch?v=I3MNOTNMIa8
https://youtu.be/X5O77OV9_ek?t=28
https://www.youtube.com/watch?v=X5O77OV9_ek
https://en.wikipedia.org/wiki/Lunar_Gateway


3. Application to Satellite Design
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This chapter introduces applications  of orbital mechanics to satellite design.
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Tsiolkovsky rocket equation
Let 𝑚𝑖 and 𝑚𝑓 be the masses before and after injection, respectively.

Acceleration of gravity is 𝑔 and the specific impulse is 𝐼𝑆𝑃, then the exhaust velocity is expressed as 𝑔𝐼𝑆𝑃.
The velocity increment obtained by this injection is

∆𝑉 = 𝑔𝐼𝑆𝑃 ln
𝑚𝑖

𝑚𝑓
,

which is called the Tsiolkovsky rocket equation.

Example
Find the incremental velocity that can be obtained by a spacecraft with the initial mass of 4,000 kg, a hydrazine 
monopropellant propulsion system (specific impulse of 200 s), and the propellant mass of 1,000 kg.

Answer
As the final mass is 4,000 – 1,000 = 3,000 kg, ∆𝑉 = 9.8 × 200 × ln Τ4000 3000 = 564 m/s.

The objectives of orbit design are (1) To find an orbit that will allow the mission to be completed, and (2) To obtain the 
necessary ΔV and deliver it to the system engineer.

Therefore, orbit mechanics and system design are connected by the Tsiolkovsky rocket equation!!

3. Application to Satellite Design
3.1 Tsiolkovsky rocket equation
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(1) Low Earth Orbit (LEO) to GEO

Using an MMH/NTO propulsion system with a specific impulse of 300 s, find the propellant mass required for the transfer from 
a circular orbit of 200 km altitude to GEO with an initial mass of 4,000 kg. However, do not consider orbital plane change.

Answer
The velocity increment required for this orbit transfer is 3.93 km/s based on the Hohmann transfer.
Therefore,

𝑚𝑓 = 4000 × exp −
3930

9.8 × 300
= 1051 ∴ 𝑚𝑝 = 𝑚𝑖 −𝑚𝑓 = 2949 kg

Here, if we can use a Hall thruster with a specific impulse of 2,000 s,

𝑚𝑓 = 4000 × exp −
4710

9.8 × 2000
= 3146 ∴ 𝑚𝑝 = 𝑚𝑖 −𝑚𝑓 = 854kg

Orbit mechanics indicates that a higher specific impulse requires much less propellant.

However, the following considerations must be taken into account when designing a satellite as system: (1) The required time
is on the order of years due to the spiral transfer; (2) The time to pass through the Van Allen belt is extremely long; (3) Although
only a small amount of propellant is required, what if the weight of the power source is also taken into account (thrust to
power ratio)?; (4) Is it probable to handle high-pressure gases such as Xenon or Krypton?

3. Application to Satellite Design
3.2 Examples – (1) LEO to GEO, (2) Phase shift
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(2) Phase shift

Two satellites were injected into a circular orbit at an altitude of 800 km by Rideshare.
However, due to communication bandwidth limitations, the two satellites must be in phase by 30 degrees in orbit. 
Therefore, one of them performs a 30-degree phase shift.

An example of solution
One satellite is decelerated at a point in the orbit for operation
and shifted to an orbit for standby with a reduced orbit length radius.

When the phase difference between the two satellites increases due to
the difference in orbital period, the satellite is accelerated at a injection
point and returns to its original orbit.

3. Application to Satellite Design
3.2 Examples – (1) LEO to GEO, (2) Phase shift

30 deg

Orbit for operation

Orbit for standby



4. Conclusion
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By mastering Chapter 1, you have acquired a good foundation in orbital mechanics.

If you understand the Lambert and rendezvous problems in Chapter 2, you can be proud to say
that you are an intermediate student of orbital mechanics.

If you are able to use everything in Chapter 2, you will already be in an important position to
teach orbital mechanics.

The mathematics used in orbital mechanics is not very difficult, and the physical phenomena
are very straightforward.

On the other hand, the orbits that you design will become more and more beautiful,
depending on your ideas.

We hope you will enjoy orbital mechanics and find your own wonderful orbits♥♥♥

4. Conclusion



Thank you very much. 
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[Disclaimer]

The views and opinions expressed in this presentation are those of 

the authors and do not necessarily reflect those of the United Nations.


